Statistical Machine Learning 2013
Course Info
- Syllabus
Navigator: C.
Andy Tsao.
Office: SE A411. Campus Tel: 3520
- Lectures: Mon 1510-1700, Thr 1610-1700@ SE
A211
- Office Hours: Mon 1210-1300, Thr 1210-1300 @ SE A411
or by appointment
- Prerequisites: Statistics, Linear
Algebra. Knowledge about regression or General/Generalized Linear
Models will be helpful.
- "Official" computing software: R (original,
mirrors
@ NTU, PU, Packages), Tinn-R, Rstudio (Editors for R)
- Textbook: Hastie,
Tibshirani and Friedman (2009). The
Elements of Statistical Learning: Data
Mining, Inference and Prediction. 2nd Edition.
Springer-Verlag.
Midterm: Nov 4 (Mon) in class at A211.
Project: Project Guideline
Final: 1510-1640 on Jan 6 (Mon), 2014 at A324.Class slides, Homework, Data, Themes
Supplemental
Sample R codes and Freewares