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Supervised learning

Training data:
{(xi , yi )}ni=1, where xi ∈ X = Rp and yi ∈ Y = {±1}
Testing (generalization) data: {(x ′j , y ′j )}mj=1

Distribution: (xi , yi )
from← (X , Y )

iid∼ PX ,Y

Machine or classifier: Find G ∈ F such that Ĝ : X → Y

Training error:

TE =
1

n

n

∑
i=1

1[yi 6=Ĝ (xi )]
=

1

n

n

∑
i=1

1[yi Ĝ (xi )<0]

Testing (generalization) error:

ĜE =
1

m

m

∑
j=1

1[y ′j Ĝ (x ′j )<0] and GE = EX ,Y {1[YG (X )<0]}
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Regression

Data:
{(xi , yi )}ni=1, where xi ∈ X , yi ∈ Y = R = (−∞, ∞)

Distribution: (xi , yi )
from← (Yi |xi )

indep.dist∼ PY |x

Machine or Regression: Find G ∈ F such that Ĝ : X → Y

Sum of Square Errors, G (X ) = β0 + β′X ,
β = (β1, · · · , βp)′, X = (X1, X2, · · · , Xp)′.

SSE = ||Y − Ŷ ||2 = 1

n

n

∑
i=1

(yi − Ĝ (xi ))
2

where
Ĝ (x) = β̂0 + β̂′x

LSE: β̂0, β̂; Ŷ projection of Y onto CS of the design matrix.

Naivity can be good: a theoretical study of naive regression C. Andy Tsao* and Li-Yin Chen



Introduction The good, the bad and the ugly/beautiful Implications Concluding remarks

Regression

Data:
{(xi , yi )}ni=1, where xi ∈ X , yi ∈ Y = R = (−∞, ∞)

Distribution: (xi , yi )
from← (Yi |xi )

indep.dist∼ PY |x

Machine or Regression: Find G ∈ F such that Ĝ : X → Y
Sum of Square Errors, G (X ) = β0 + β′X ,
β = (β1, · · · , βp)′, X = (X1, X2, · · · , Xp)′.

SSE = ||Y − Ŷ ||2 = 1
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Ĝ (x) = β̂0 + β̂′x
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Naive regression

Data:
{(xi , yi )}ni=1, where xi ∈ X , yi ∈ Y = {−1, 1}

Distribution: (xi , yi )
from← (Yi |xi )

indep.dist∼ PY |x

Machine or Regression: Find G ∈ F such that Ĝ : X → Y

Ĝ (x) = β̂0 + β̂′x

TE and GE

LSE: β̂0, β̂; Ŷ projection of Y onto CS of the design matrix.
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Naivity of naive regression

Labels/factors in Y as numbers

G is linear

LSE β̂0, β̂
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The good

Straightforward/Naive: Similar to regression/general linear
model

Easy implementation: say glm in R

Adoption of tricks or methods in regression: variable selection

Naivity can be good: a theoretical study of naive regression C. Andy Tsao* and Li-Yin Chen
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The bad

Violation of Gauss-Markov Theorem

LSE 9 Errors in classification

ŷ /∈ [0, 1]
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The ugly/beautiful-1

Proposition (NR-LDA equivalence)

Let Y = {−n1n , n2
n }, β̂0, β̂ minimizes ∑n

i=1(yi − β0 − β′xi )2 and

f̂ (x) = β̂0 + β̂′x . Then

1 β̂ ∝ Σ̂−1(µ̂2 − µ̂1)

2 If the data is completely balanced, i.e. n1 = n2, then
f̂ (x) > 0 iff LDA classifies the case to class 2.

Recall LDA classifies the case to class 2 if

x ′Σ̂−1(µ̂2− µ̂1) >
1

2
(µ̂2− µ̂1)

′Σ̂−1(µ̂2+ µ̂1) + log(π̂1)− log(π̂2),

and class 1 otherwise with π̂i = ni/n, i = 1, 2.
Ripley (1996), Fisher (1936),
Hastie, Tibishirani and Friedman (2009).
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The ugly/beautiful-2

β̂ ∝ Σ̂−1(µ̂2 − µ̂1) if Y = {−1, 1} or any distinct coding of
two classes, e.g. {0, 1} or {1, 2}.
The decision hyperplanes of NR and LDA share the same
normal vector (subject to normalization)

For completely balanced data,
i.e. n1 = n2, NR is equivalent to LDA.
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The ugly/beautiful-3

Proposition (Class estimates)

For k = 1, · · · , K , let tk be an indicator vector with the k-th entry
equals 1 and all other entries equal zero. Let y = (y1, · · · , yK )

′

then
argmink ||tk − y|| = argmaxk yk(= k0).

||tk − y||2 − ||tk0 − y||2 = 2(tk0 − tk)
′y = 2(yk0 − yk) ≥ 0. (1)

Class estimates: ∑k yk = 1, yk ∈ [0, 1].

Hastie, Tibishirani and Friedman (2009).
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The ugly/beautiful-4

No assumption on ∑k yk = 1 nor yk ∈ [0, 1] is needed

Interpret y = (y1, · · · , yK )
′ = f̂ (x) as class probabilities

For Y = {0, 1}, NR ∼ regression on the indicator response
matrix, e.g.

Let Y c = 1− Y (Y , Y c |X1, X2)1 0 | 2 3
0 1 | 1 5
1 0 | 3 2


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Implications

NR is invariant wrt different codings of Y , e.g.
Y = {0, 1}, {−1, 1} or {1, 2}.
NR and LDA have the same ROC curve (hyperplanes share
the same normal vector)

If n1 = n2, NR=LDA

OK even if ŷ /∈ [0, 1]

LDA with some categorical X’s: similar to those in GLM

LSE: Ŷ = Ĝ (X ) = β̂0 + β̂′X is unique but (β̂0, β̂) is not.

Variable selection

Implementation: Least Angle Regression (LARS package, R)

Efron, et al (2004).
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Conclusion and Discussion

NR is an easy classifier and relates closely to LDA and
indicator matrix regression

Alternative implementation for LDA for binary classification
with nearly balanced data

Tricks and ideas in GLM can be readily adapted

Kernel FDA, extension to multi-class classification

LDA vs. NR: Plug-in Population Bayes Rule vs. Sample
version decision rule.
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Thanks for your attention!
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