SML Week 2-3

C. Andy Tsao

Dept. of Applied Math National Dong Hwa University

September 26, 2013

Outline

(1) KNN, LS and more
(2) Introduction of Linear Methods
(3) Linear Regression Models and LS
(4) Regression by Successive Orthogonalization: $\S 3.3$
(5) Variable Selection

Reference: §2.4-2.9, Chapter 3 of HTF's ESL

$E(Y \mid X)$ linear in X_{1}, \cdots, X_{p}

- Both KNN and LS can be viewed as $E(Y \mid x)$ (in some sense) which minimizes the expected (squared) prediction error $E P E(f)=E_{Y, X}(Y-f(X))^{2}=E_{X} E_{Y \mid X}\left[(Y-f(X))^{2} \mid X\right]$
- What if loss is chosen as $L_{1}, L(y, f(x))=|y-f(x)|$, instead of the L_{2} loss $(y-f(x))^{2}$?
(1) $\hat{f}(x)=$ median $(Y \mid x)$ more robust but lesser convenient
- Discrete Y ? Or $\# \mathcal{Y}$ is finite?

Bayes classifier for Discrete Scenario

- WLOG, assume $\mathcal{Y}=\{1, \cdot, K\}$
$\operatorname{EPE}(G)=E_{Y, X} L(Y, G(X)), \quad X, Y \sim P_{Y, X}$

$$
=E_{X} E_{Y \mid X} L(Y, G(X))=E_{X} \sum_{k=1}^{K} L(k, G(X)) P(Y=k \mid X)
$$

- Minimize pointwise $\rightsquigarrow \hat{G}(x)=\arg \min _{y \in \mathcal{Y}} E_{Y \mid x} L(Y, G(x))$. (Bayes classifier)
- When $L(y, G(x))=1_{[y \neq G(x)]}, 0-1$ loss, $\hat{G}(x)=\arg \min _{y \in \mathcal{Y}}[1-P(y \mid X=x)]=\arg \max _{y \in \mathcal{Y}} P(y \mid X=$ $x)$.
- Bayes classifier
- Good: Achieve the optimal error rate (Bayes error rate).
- Bad: the conditional $P_{Y \mid x}$ usually unknown and can lead to unreasonable estimator in cases.

Ways to improve KNN, LSE

Estimation of $E(Y \mid x)$ through KNN or regression can fail

- Curse of dimensionality: KNN includes points afar leads to large error
- If special structure is known, further reduction in bias and variance is possible.
Prediction Problem: Emphasis on " Y " rather than " X "
- Statistical Model: Assumption on $P_{Y, X}($ or ϵ), say $Y=f(X)+\epsilon$
- Supervised learning

Functional approximation

- Functional approximation
- regression: $f(x)=x^{\prime} \beta, \beta \in R^{p}$
- linear basis expansions: $f_{\theta}(x)=\sum_{k} h_{k}(x) \theta_{k}$
- $\left\{h_{k}(x)\right\}_{k}$ forms a basis for the feasible/approximate space F where the target f is located/approximated.
- Examples: $x_{1}^{2}, x_{1} x_{2}, \cos \left(x_{3}\right)$. Polynomials, trig functions. Also

$$
h_{k}(x)=\frac{1}{1+\exp \left(-x^{\prime} \beta\right)}
$$

- Residual Sum of Squares (RSS)
$R S S(\theta)=\sum_{i=1}^{n}\left(y_{i}-f_{\theta}\left(x_{i}\right)\right)^{2}$. Projection.

$E(Y \mid X)$ linear in X_{1}, \cdots, X_{p}

- Simple: easier computation, interpretation and communication
- Readily generalizable: transformation on Y and X, combination of X 's'
- Conceptual Framework for more general methods, for example, nonlinear problems.

Definition

$\left(Y_{i}, x_{i}\right)_{i=1}^{n}$ with $x_{i}=\left(x_{i 1}, x_{i 2}, \cdots, x_{i p}\right)^{\prime}$

- $Y_{i}=\beta_{0}+\sum_{j=1}^{p} x_{i j} \beta_{j}+\epsilon_{i}, i=1, \cdots, n$.
- ϵ_{i} id with $E\left(\epsilon_{i}\right)=0$ and $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=\sigma^{2}$ if $i=j ; 0$ otherwise.
- (Typically) $\epsilon_{i} \sim_{i i d} N\left(0, \sigma^{2}\right)$.

Alternatively,

- Systematic component: $E(Y \mid X)=\beta_{0}+\sum_{j=1}^{p} X_{j} \beta_{j}$
- Random component: ϵ_{i} id with $E\left(\epsilon_{i}\right)=0$ and $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=\sigma^{2}$ if $i=j ; 0$ otherwise.

How flexible is LR?

Assume $\epsilon_{i} \sim_{\text {iid }} N\left(0, \sigma^{2}\right)$

- $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{0}+\beta_{1} X_{1 i} X_{2 i}+\epsilon_{i}$
- $\sin \left(Y_{i}\right)=\exp \left(\beta_{0}+\beta_{1} X_{i}\right)+\epsilon_{i}$

How flexible is LR?

Assume $\epsilon_{i} \sim_{i i d} N\left(0, \sigma^{2}\right)$

- $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{0}+\beta_{1} X_{1 i} X_{2 i}+\epsilon_{i}$
- $\sin \left(Y_{i}\right)=\exp \left(\beta_{0}+\beta_{1} X_{i}\right)+\epsilon_{i}$

Your turn

How flexible is LR?

Assume $\epsilon_{i} \sim_{i i d} N\left(0, \sigma^{2}\right)$

- $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
- $Y_{i}=\beta_{0}+\beta_{1} X_{1 i} X_{2 i}+\epsilon_{i}$
- $\sin \left(Y_{i}\right)=\exp \left(\beta_{0}+\beta_{1} X_{i}\right)+\epsilon_{i}$

Your turn

- quantitative inputs, X
- transformation of quantitative inputs, $\sin (X), \log (X), \sqrt{X}$
- powers, $X_{2}=X^{2}, X_{3}=X^{3}$
- interactions: $X_{3}=X_{1}^{2} X_{2}$.
- For GLM (general linear model), qualitative inputs, say $1_{[X>20]}$.
Remark: Linear in parameters (β) not in X.

Estimation of LR

$Y=X \beta+\epsilon$

- Solve β st $Q(\beta)=\|Y-X \beta\|^{2}$ is minimized
- Normal equation: β solves $X^{t}(Y-X \beta)=0$.
- When $X^{t} X$ is nonsingular, $\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y$.
- Geometric Interpretation: $\hat{Y}=X\left(X^{t} X\right)^{-1} X^{t} Y$ is the projection of Y onto the column space of the design matrix X.

Inference: HT and Cl

- $\hat{\beta} \sim N\left(\beta,\left(X^{t} X\right)^{-1} \sigma^{2}\right)$
- $\hat{\sigma^{2}}=\|Y-\hat{Y}\|^{2} /(n-p-1)$.
- $(n-p-1) \hat{\sigma^{2}} \sim \sigma^{2} \chi_{n-p-1}^{2}$.
- Gauss-Markov Theorem: For any estimable parameter $\theta=a^{t} \beta, a^{t} \hat{\beta}$ is BLUE provided GM condition holds.

Simple Linear Regression

- $Y_{i}=x_{i} \beta+\epsilon_{i}$ (No intercept)
- $Y=X \beta+\epsilon$ where $X=\left(x_{1}, \cdots, x_{n}\right)^{t}$
- $\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y=\frac{\sum_{1}^{n} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$,

$$
r_{i}=y_{i}-x_{i} \hat{\beta}
$$

- In inner product with $\langle x, y\rangle=\sum_{i} x_{i} y_{i}$
$\hat{\beta}=\frac{\langle x, y\rangle}{\langle x, x\rangle}, \quad r=Y-X \hat{\beta}$.

Multiple Linear Regression w/ orthogonal x's

- $Y=X \beta+\epsilon$ where $X=\left(X_{1}, \cdots, X_{n}\right)^{t}$
- $\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y=\frac{\sum_{1}^{n} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$, $r_{i}=y_{i}-x_{i} \hat{\beta}$.
- $\hat{\beta}_{j}=\frac{\left\langle X_{j}, y\right\rangle}{\left\langle X_{j}, X_{j}\right\rangle}, \quad r=y-X \hat{\beta}$.
- When inputs are orthogonal, they have no effect on each other parameter estimates in the model.

Succession Orthogonalization w/ general x's

Orthogonality occurs in balanced, designed experiment but not in general

- Initialize $z_{0}=x_{0}=1$
- For $j=1,2, \cdots, p$

Regress x_{j} on $z_{0}, z_{1}, \cdots, z_{j-1}$ to get
$\hat{\gamma_{l j}}=\frac{\left\langle z_{l}, x_{j}\right\rangle}{\left\langle z_{l}, z_{l}\right\rangle}, l=0,1, \cdots, j-1$
$z_{j}=x_{j}-\sum_{k=0}^{j-1} \hat{\gamma}_{j j} z_{k}$.

- Regress y on the residual z_{p} to get $\hat{\beta_{p}}$.

Gram-Schmidt procedure for multiple regression

- z's are orthogonal to each other.
- Iterative projection of Y onto z 's
- $\hat{\beta}=\left(\hat{\beta_{0}}, \cdots, \hat{\beta_{p}}\right)^{\prime}$ is a LSE.

Succession Orthogonalization: Recap

- $\hat{\beta}_{j}$ represents the additional contribution of X_{j} on Y, after X_{j} has been adjusted by $X_{0}, X_{1}, \cdots, X_{j-1}$.
- $\hat{Y}=X \hat{\beta}$ is the projection of Y onto column space of X
- Non-unique $\hat{\beta}$. Unique \hat{Y}
- Alternative iteration for β : Iterative residual fitting.

Exercise 1: Write down the algorithm for iterative residual fitting and show that the obtained $\hat{\beta}$ also solves the normal equation.

Unsatisfying LSE

$Y \mid X_{1}, \cdots, X_{q}$, q large/huge

- Accuracy

Even if $\hat{\beta}=\left(X^{t} X\right)^{-1} X^{t} Y$ exists, it may have large variance.

- Interpretation

Non-uniqueness

- Scientific Important X might be missing
- Variable selection

Subset Selection

$Y \mid X_{1}, \cdots, X_{q}, q$ large/huge. Want to pick $p(\ll q) X$'s out of them.

- What have we learned before?

Subset Selection

$Y \mid X_{1}, \cdots, X_{q}, q$ large/huge. Want to pick $p(\ll q)$ X's out of them.

- What have we learned before?
- Accuracy versus parsimoniousness

Subset Selection

$Y \mid X_{1}, \cdots, X_{q}, q$ large/huge. Want to pick $p(\ll q)$ X's out of them.

- What have we learned before?
- Accuracy versus parsimoniousness
- Mission impossible: High accuracy, few indep variables
- Criterion-based approach: $R_{\text {adj }}^{2}$, AIC, etc
- Important First
- Simple versus Complex terms
- Use auto procedure only when necessary. Screening rather than determing.

Shrinking Methods

$$
\beta^{\text {ridge }}=\operatorname{argmin}_{\beta}\left\{(Y-X \beta)^{t}(Y-X \beta)+\lambda \beta^{t} \beta\right\}
$$

- What does this mean? Alternatives?
- (Ex 2) It can be shown

$$
\beta^{\text {ridge }}=\left(X^{t} X+\lambda I\right)^{-1} X^{t} Y
$$

