SML Week 2-3

C. Andy Tsao

Dept. of Applied Math National Dong Hwa University

September 26, 2013

A D

- 2 Introduction of Linear Methods
- 3 Linear Regression Models and LS
- Regression by Successive Orthogonalization: §3.3
- 5 Variable Selection

Reference: $\S2.4-2.9$, Chapter 3 of HTF's ESL

E(Y|X) linear in X_1, \cdots, X_p

- Both KNN and LS can be viewed as E(Y|x) (in some sense) which minimizes the *expected (squared) prediction error* $EPE(f) = E_{Y,X}(Y - f(X))^2 = E_X E_{Y|X}[(Y - f(X))^2|X]$
- What if loss is chosen as L_1 , L(y, f(x)) = |y f(x)|, instead of the L_2 loss $(y f(x))^2$?
 - (1) $\hat{f}(x) = median(Y|x)$ more robust but lesser convenient
- Discrete Y? Or $\#\mathcal{Y}$ is finite?

Bayes classifier for Discrete Scenario

WLOG, assume
$$\mathcal{Y} = \{1, \cdot, K\}$$

 $EPE(G) = E_{Y,X}L(Y, G(X)), \quad X, Y \sim P_{Y,X}$
 $= E_X E_{Y|X}L(Y, G(X)) = E_X \sum_{k=1}^{K} L(k, G(X))P(Y = k|X)$

- Minimize pointwise $\rightsquigarrow \hat{G}(x) = \arg \min_{y \in \mathcal{Y}} E_{Y|x}L(Y, G(x)).$ (Bayes classifier)
- When $L(y, G(x)) = 1_{[y \neq G(x)]}$, 0-1 loss, $\hat{G}(x) = \arg \min_{y \in \mathcal{Y}} [1 - P(y|X = x)] = \arg \max_{y \in \mathcal{Y}} P(y|X = x).$
- Bayes classifier
 - Good: Achieve the optimal error rate (Bayes error rate).
 - Bad: the conditional $P_{Y|x}$ usually unknown and can lead to unreasonable estimator in cases.

Ways to improve KNN, LSE

Estimation of E(Y|x) through KNN or regression can fail

- Curse of dimensionality: KNN includes points afar leads to large error
- If special structure is known, further reduction in bias and variance is possible.

Prediction Problem: Emphasis on "Y" rather than "X"

- Statistical Model: Assumption on $P_{Y,X}$ (or ϵ), say $Y = f(X) + \epsilon$
- Supervised learning

Functional approximation

- Functional approximation
 - regression: $f(x) = x'\beta, \beta \in R^p$
 - linear basis expansions: $f_{\theta}(x) = \sum_{k} h_{k}(x) \theta_{k}$
 - {*h_k*(*x*)}_{*k*} forms a basis for the feasible/approximate space *F* where the target *f* is located/approximated.
 - Examples: $x_1^2, x_1x_2, \cos(x_3)$. Polynomials, trig functions. Also $h_k(x) = \frac{1}{1 + exp(-x'\beta)}$
- Residual Sum of Squares (RSS) $RSS(\theta) = \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$. Projection.

- Simple: easier computation, interpretation and communication
- Readily generalizable: transformation on Y and X, combination of X's'
- Conceptual Framework for more general methods, for example, nonlinear problems.

Definition

$$(Y_i, x_i)_{i=1}^n$$
 with $x_i = (x_{i1}, x_{i2}, \cdots, x_{ip})'$

•
$$Y_i = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i, i = 1, \cdots, n.$$

• ϵ_i id with $E(\epsilon_i) = 0$ and $Cov(\epsilon_i, \epsilon_j) = \sigma^2$ if i = j; 0 otherwise.

• (Typically)
$$\epsilon_i \sim_{iid} N(0, \sigma^2)$$
.

Alternatively,

- Systematic component: $E(Y|X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$
- Random component: ε_i id with E(ε_i) = 0 and Cov(ε_i, ε_j) = σ² if i = j; 0 otherwise.

How flexible is LR?

Assume $\epsilon_i \sim_{iid} N(0, \sigma^2)$

•
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

•
$$Y_i = \beta_0 + \beta_1 X_{1i} X_{2i} + \epsilon_i$$

•
$$sin(Y_i) = exp(\beta_0 + \beta_1 X_i) + \epsilon_i$$

< 日 > < 同 > < 三 > < 三 >

3

How flexible is LR?

Assume $\epsilon_i \sim_{iid} N(0, \sigma^2)$

•
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

•
$$Y_i = \beta_0 + \beta_1 X_{1i} X_{2i} + \epsilon_i$$

•
$$sin(Y_i) = exp(\beta_0 + \beta_1 X_i) + \epsilon_i$$

Your turn

Image: A image: A

How flexible is LR?

Assume $\epsilon_i \sim_{iid} N(0, \sigma^2)$

•
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

•
$$Y_i = \beta_0 + \beta_1 X_{1i} X_{2i} + \epsilon_i$$

•
$$sin(Y_i) = exp(\beta_0 + \beta_1 X_i) + \epsilon_i$$

Your turn

- quantitative inputs, X
- transformation of quantitative inputs, sin(X), log(X), \sqrt{X}

• powers,
$$X_2 = X^2, X_3 = X^3$$

- interactions: $X_3 = X_1^2 X_2$.
- For GLM (general linear model), qualitative inputs, say $1_{[X>20]}$.

Remark: Linear in parameters (β) not in X.

Estimation of LR

- $Y = X\beta + \epsilon$
 - Solve β st $Q(\beta) = ||Y X\beta||^2$ is minimized
 - Normal equation: β solves $X^t(Y X\beta) = 0$.
 - When $X^t X$ is nonsingular, $\hat{\beta} = (X^t X)^{-1} X^t Y$.
 - Geometric Interpretation: Ŷ = X(X^tX)⁻¹X^tY is the projection of Y onto the column space of the design matrix X.

Inference: HT and CI

•
$$\hat{\beta} \sim N(\beta, (X^t X)^{-1} \sigma^2)$$

•
$$\hat{\sigma^2} = ||Y - \hat{Y}||^2/(n - p - 1).$$

•
$$(n-p-1)\hat{\sigma^2} \sim \sigma^2 \chi^2_{n-p-1}$$
.

• Gauss-Markov Theorem: For any estimable parameter $\theta = a^t \beta$, $a^t \hat{\beta}$ is BLUE provided GM condition holds.

Simple Linear Regression

•
$$Y_i = x_i\beta + \epsilon_i$$
 (No intercept)

•
$$Y = X\beta + \epsilon$$
 where $X = (x_1, \cdots, x_n)^t$

•
$$\hat{\beta} = (X^t X)^{-1} X^t Y = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_i x_i^2},$$

 $r_i = y_i - x_i \hat{\beta}.$

• In inner product with
$$\langle x, y \rangle = \sum_i x_i y_i$$

 $\hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle}, \quad r = Y - X\hat{\beta}.$

▲ 同 ▶ → ● 三

э

э

Multiple Linear Regression w/ orthogonal x's

_

•
$$Y = X\beta + \epsilon$$
 where $X = (X_1, \cdots, X_n)^t$

•
$$\hat{\beta} = (X^t X)^{-1} X^t Y = \frac{\sum_i^n x_i y_i}{\sum_i x_i^2},$$

 $r_i = y_i - x_i \hat{\beta}.$
• $\hat{\beta}_j = \frac{\langle X_j, y \rangle}{\langle X_i, X_i \rangle}, \quad r = y - X \hat{\beta}.$

• When inputs are orthogonal, they have no effect on each other parameter estimates in the model.

Succession Orthogonalization w/ general x's

Orthogonality occurs in balanced, designed experiment but not in general

• Initialize $z_0 = x_0 = 1$

• For
$$j = 1, 2, \dots, p$$

Regress x_j on z_0, z_1, \dots, z_{j-1} to get
 $\hat{\gamma}_{lj} = \frac{\langle z_l, x_j \rangle}{\langle z_l, z_l \rangle}, l = 0, 1, \dots, j-1$
 $z_j = x_j - \sum_{k=0}^{j-1} \hat{\gamma}_{lj} z_k.$

• Regress y on the residual z_p to get $\hat{\beta}_p$.

Gram-Schmidt procedure for multiple regression

- z's are orthogonal to each other.
- Iterative projection of Y onto z's

•
$$\hat{\beta} = (\hat{\beta}_0, \cdots, \hat{\beta}_p)'$$
 is a LSE.

Succession Orthogonalization: Recap

- $\hat{\beta}_j$ represents the additional contribution of X_j on Y, after X_j has been adjusted by X_0, X_1, \dots, X_{j-1} .
- $\hat{Y} = X\hat{\beta}$ is **the** projection of Y onto column space of X
- Non-unique $\hat{\beta}$. Unique \hat{Y}
- Alternative iteration for β : Iterative residual fitting.

Exercise 1: Write down the algorithm for iterative residual fitting and show that the obtained $\hat{\beta}$ also solves the normal equation.

Unsatisfying LSE

$$Y|X_1,\cdots,X_q, \ q \ large/huge$$

- Accuracy Even if $\hat{\beta} = (X^t X)^{-1} X^t Y$ exists, it may have large variance.
- Interpretation Non-uniqueness
- Scientific Important X might be missing
- Variable selection

Subset Selection

 $Y|X_1, \cdots, X_q, q | arge/huge.$ Want to pick p(<< q) X's out of them.

• What have we learned before?

э

- < 同 ト < 三

Subset Selection

 $Y|X_1, \cdots, X_q, q | arge/huge.$ Want to pick p(<< q) X's out of them.

- What have we learned before?
- Accuracy versus parsimoniousness

< 12 ▶ < 3

Subset Selection

 $Y|X_1, \cdots, X_q, q | arge/huge$. Want to pick p(<< q) X's out of them.

- What have we learned before?
- Accuracy versus parsimoniousness
- Mission impossible: High accuracy, few indep variables
- Criterion-based approach: R_{adj}^2 , AIC, etc
- Important First
- Simple versus Complex terms
- Use auto procedure only when necessary. Screening rather than determing.

Shrinking Methods

$$\beta^{\hat{idge}} = \operatorname{argmin}_{\beta} \left\{ (Y - X\beta)^{t} (Y - X\beta) + \lambda \beta^{t} \beta \right\}$$

- What does this mean? Alternatives?
- (Ex 2) It can be shown

$$\beta^{\hat{ridge}} = (X^t X + \lambda I)^{-1} X^t Y.$$

▲ 同 ▶ → ● 三