SML Week 1

C. Andy Tsao

Institute of Statistics National Dong Hwa University

September 15, 2013

3

- ∢ ≣ →

Image: A matrix

Outline

- ∢ ⊢⊒ →

Motivating problems

- What is your income based on the items you bought? [Regression]
- Prostate Cancer [Regression] (http: //www.cancer.gov/cancertopics/factsheet/detection/PSA)
- Animal Recognition (Is it a dog?) [Classification]
- Email Spam
- Hand-written Digit Recognition
- cf. Figure 1.

Formulation of SML problem

Let $(y_i, x_i)_{i=1}^n \sim_{iid} P_{Y,X}$ with $y's \in \mathcal{Y}$, $x's \in \mathcal{X}$. Objective: Find $F \in \mathcal{F}$ such that $E_{Y,X}L(Y, F(X))$ is minimized.

- For classification problem, $\#\mathcal{Y} = \mathcal{K} < \infty$. And $\mathcal{Y} = \mathcal{R} = (-\infty, \infty)$ for general prediction problem.
- Examples: Hand-digit recognition, spam-detection, diagnosis, precipitation prediction, etc.
- Learning (by examples [mainly training data]) vs. Rule-based classification
- supervised, semi-supervised, unsupervised.

Statistical Decision Theory: Versions of Expected Losses

[Point Estimation Problem] Let $X_1, \dots, X_n \sim f_{\theta}$, for example, pdf of $N(\theta, \sigma^2)$ or pmf of $Bernoulli(\theta)$ Objective: Find $\hat{\theta}_*$ [Point Estimation Problem]

Let $X_1, \dots, X_n \sim f_{\theta}$, for example, pdf of $N(\theta, \sigma^2)$ or pmf of $Bernoulli(\theta)$ Objective: Find $\hat{\theta_*}$ which minimizes

• Risk:
$$R(\theta, \hat{\theta}) = E_{X|\theta}L(\theta, \hat{\theta}(X))$$

• Bayes expected loss:
$$E_{\theta|x}L(\theta, \hat{\theta}(x))$$
 wrt π

• Bayes Risk:
$$r(\pi, \hat{\theta}) = E_{X, \theta} L(\theta, \hat{\theta}(X))$$
 wrt π

among all $\hat{\theta} \in \mathcal{D}$, collection of all estimators

Which decision δ is better?

With respect to risks

- $\delta_1 >_R \delta_2$ iff $R(\theta, \delta_1) \le R(\theta, \delta_2)$ for all θ and inequality holds for some $\theta \in \Theta$
- δ is inadmissible in D iff
 there exists δ_{*} which is R-better than δ.
- δ is admissible in D iff
 it is not inadmissible in D

Bayes Procedure

We say δ_{π} is a Bayes procedure wrt π iff

$$\delta_{\pi} = \arg\min_{\delta \in \mathcal{D}} r(\pi, \delta).$$

< 一型

Complete Class Theorem

- A class C is complete if for any decision δ not in C, there exists a decision δ' which dominates δ.
- Under some regularity conditions, the class of Generalized Bayes procedures form a complete class.
- Implication: Search no further. Work with Generalized Bayes procedures.

E(Y|x)

Consider $X \in \mathbb{R}^p$, $Y \in \mathbb{R}$ with joint prob distribution $P_{Y,X}$. Seek a ftn f for predicting Y given X. Under $L(Y, f(X)) = (Y - f(X))^2$, squared error loss, in the spirit of Bayes risk, find f minimize the Expected Predicted Error (EPE(f)) among all possible functions

$$EPE(f) = E(Y - f(X))^2 = \int (y - f(x))^2 dP_{Y,X}(y,x)$$
(1)
= $E_X E_{Y|X} ([Y - f(X)]^2 |X).$

Conditioning on X = x, f(x) is a *constant*. Pointwise minimization

$$f_{\pi}(x) = \operatorname{argmin}_{c} E_{Y|x}\left([Y-c]^{2}|x\right).$$

Minimizer $f_{\pi}(x) = E(Y|x)$, best prediction of Y given x. That is

$$EPE(f_{\pi}) \leq EPE(f)$$
, for all $f \in \mathcal{F}$

KNN as E(Y|x)

Let $T = (Y_i, X_i)_{i=1}^n$ be the training data.

- $\hat{f}(x) = Ave(y_i|x_i \in N_k(x))$, where "Ave" =average, $N_k(x)$ is the neighborhood containing the k points in T closest to x.
- expectation is approximated by averaging over sample space.
- conditioning at a point is relaxed to conditioning on some region "close" to the target point *x*.

How good is KNN? Rationale? Search is over?

KNN as E(Y|x)

Let $T = (Y_i, X_i)_{i=1}^n$ be the training data.

- $\hat{f}(x) = Ave(y_i|x_i \in N_k(x))$, where "Ave" =average, $N_k(x)$ is the neighborhood containing the k points in T closest to x.
- expectation is approximated by averaging over sample space.
- conditioning at a point is relaxed to conditioning on some region "close" to the target point *x*.

How good is KNN? Rationale? Search is over?

- Sample size usually small
- As p increases, $N_k(x)$ becomes huge
- Convergence
 - Converge holds. $\hat{f} \to f$ as $n \to \infty$
 - Slower rate of convergence.

LS as E(Y|x)

- $f(x) \approx x^T \beta$
- Plug this f into (1), β can be solved $\beta = [E(XX^T)]^{-1}E(XY).$

3

- ∢ ศ⊒ ▶

KNN vs. LS

- LS assumes $f(x) \approx$ globally by a linear function
- KNN assumes $f(x) \approx$ locally by a const function