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Intro: Supervised Learning

Training data (xi, yi)
N
1 , x ∈ X , y ∈ Y = {±1}.;

Testing Data (x′
j , y

′
j)

M
1  (Xi, Yi) ∼iid PX,Y .

Find Machine (Classifier) F ∈ F
F : X → Y
Training Error

TE =
1

N

∑

i

1[yi 6=F (xi)]

Generalization/Testing Error

ĜE =
1

M

∑

j

1[y′

j 6=F (x′

j)]
; GE = EY,X1[Y 6=F (X)]
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Intro: Boosting
Ensemble classifiers.

Weak (base) learner

Sequentially applying it to reweighted version of the
training data

Higher weights on the previous misclassified cases
Boosting iteration: T

Weighted majority vote

Schapire (1990), Freund and Schapire (1997), Friedman,
Hastie and Tibshirani (2000).
Breiman (2004), Jiang (2004), Meir and Rätsch (2003)
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Intro: Discrete AdaBoost
1. Start with weights Dt(i) = 1/N, i = 1 to N.

2. Repeat for t = 1 to T

Obtain ht(x) from weak learner h using weighted
training data wrt Dt

Compute ǫt = EDt
1[yht(x)<0], αt = log 1−ǫt

ǫt
.

Update i = 1 to N ,

Dt+1(i) =
1

Zt

Dt(i) exp
(
αt1[yiht(xi)<0]

)
,

where Zt is the normalizer.

3. Output the classifier FT (x) = sgn
[∑T

t=1 αtht(x)
]

Freund and Schapire (1997)
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Convergence and Consistency
limT→∞ EY,XL(FT (X), Y ) = EY,XL(FB(X), Y )

limT→∞ FT (x) = FB(x), for all x ∈ X .

where FB(x) = sgn(log( P (Y =1|x)
P (Y =−1|x))) and

L(F (X), Y ) = 1[Y F (X)<0].
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Intro: Theories
Bayes consistent
(Population Version, Breiman (2004)).
Process Consistent
(Sample Version, Jiang (2004))

Regularization needed, say, early stopping, restriction
on base learners,particularly for noise data.

On the other hand

Relatively immune to overfitting in practical apps.

Mease and Wyner (2007, JMLR). Evidence
Contradictory to Statistical View.

Relatively immune to overfitting (Convergence)
No regularization needed for some noisy data sets
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“Statistical View”: FHT’s Insights
Friedman, Hastie and Tibishirani (2000).

The Discrete AdaBoost (population version) builds an
additive logistic regression model via Newton-like
updates for minimizing E(e−Y F (X)).

Exponential Criterion
L(Y, F (X)) = e−Y F (X) ≈ L0(Y, F (X)) = 1[Y F (X)<0].

Easier for statisticians then ML approach

Motivate boosting-like algorithm
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Closer Look
Goal: Predicting Y ∈ {±1} by the sign of estimated F .
F : X → R.

EXJ(F (X)) = EX,Y [e−Y F (X)] ≈ EX,Y 1[Y F (X)<0]

Min J(F (x)). Update F (x) by F (x) + cf(x) with
f(x) = ±1, c ∈ R
For fixed c and x, expand at f(x) = 0

Ft+1(x) = Ft(x) + αt sgn(Ewt
(Y |x)) where

αt = log(
1− ǫt

ǫt
), ǫt = Ewt

1[y sgn(Ewt(Y |x))<0]

wt(x, y) = exp(−yFt(x)).
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Motivating Questions
Convergence: Whether this iterative update converge?

Consistency: Does it converge to the optimal Bayes
with respect to L0(Y, F (X)) = 1[Y F (X)<0]?

Mease and Wyner (2007). Evidence Contradictory to
Statistical View. of Boosting
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Questions Solved?
“Statistic View”: AdaBoost as a conditional risk
minimizer wrt some approximate losses

AdaBoost can overfit
Regularization needed

process-consistent or consistent under conditions on
base learners

Mease and Wyner (2007): Simulation experiments
AdaBoost relatively immunes to overfitting
No regularization needed
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A decision theoretical approach
Find F (x) minimizing EY |xL(Y, F (x))

Y = g(θ) = sgn(θ) and X ∼ Pθ(x)

θ ∼ π(θ), prior

Statistical problem

Objective: Find a classifier F minimizing

J(F ) = Eπ(θ|x)L(g(θ), F (x)) ≈ Eπ(θ|x)L̃(g(θ), F (x))

Loss

L(g(θ), F (x)) = e−g(θ)F (x) ≈ L0(g(θ), F (x)) = 1[g(θ)F (x)<0].
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Normal-normal setting
Let X ∼ N(θ, σ2) and π(θ) ∼ N(µ, τ2), w/ known µ and τ2

Posterior π(θ|x) ∼ N(µx, ρ
−1), where

µx =
1

ρ

( µ

τ2
+

x

σ2

)
=

σ2µ + τ2x

σ2 + τ2

ρ =
1

τ2
+

1

σ2
=

σ2 + τ2

σ2τ2

And marginal density of X

m(x) =
1√

2πρστ
exp

{
− (µ− x)2

2(σ2 + τ2)

}
.
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Iterative Bayes FPIB: Derivation
Follow the steps similar to FHT (2000)

J(F + f) = Eπ(θ|x)

{
e−g(θ)[F (x)+f(x)]

}

≈ J̃(F + f) = Eπ(θ|x)

{
e−g(θ)F (x)[1− g(θ)f(x) + f2(x)/2]

}
.

The minimizer f can then be found by differentiation

f(x) =
Eπ(θ|x)

{
g(θ)e−g(θ)F (x)

}

Eπ(θ|x)

{
e−g(θ)F (x)

}

=
e−F (x)Φ(

√
ρµx)− eF (x)[1− Φ(

√
ρµx)]

e−F (x)Φ(
√

ρµx) + eF (x)[1− Φ(
√

ρµx)]
.
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Iterative Bayes FPIB: Iteration

FPIB,t+1(x) = FPIB,t(x) + ft(x)

= FPIB,t(x) +
Φ(
√

ρµx)− e2FPIB,t(x)
[
1− Φ(

√
ρµx)

]

Φ(
√

ρµx) + e2FPIB,t(x)
[
1− Φ(

√
ρµx)

] .

Does FPIB,t converge?

Does FPIB,t to the optimal Bayes procedure wrt L0?
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Iterative Bayes FPIB: Convergence
Theorem 1. For any initial FPIB,1(x), as t goes to infinity

FPIB,t(x)→ Fπ(x) =
1

2
ln

(
Φ(
√

ρµx)

1− Φ(
√

ρµx)

)
.
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Iterative Bayes FPIB: Lemmas
Lemma 1 (Fixed Point Theorem). If ϕ is a contraction of ℜ → ℜ, that is,
there exists α ∈ (0, 1) such that |ϕ(x)− ϕ(y)| < α|x− y| for all
x, y ∈ ℜ, then there exists one and only one x ∈ ℜ such that
ϕ(x) = x.

Lemma 2 (Cauchy-Schwartz Inequality). For any real
ai, bi, i = 1, 2, · · · , n,

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
≥
(

n∑

i=1

aibi

)2

.

Lemma 3. For all x 6= 0 2(ex−1)
x(ex+1) < 1.
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FFHT : Derivation

FFHT,t(x)← FFHT,t(x) +
1

2
ln

(
1− err

err

)
s(x) (1)

where s(x) = sgn(f(x)) and

err =
Eπ(θ|x){1[s(x)g(θ)<0]e

−g(θ)FFHT (x)}
Eπ(θ|x){e−g(θ)FFHT (x)}

f(x) =
e−FFHT (x)Φ(

√
ρµx)− eFFHT (x)[1− Φ(

√
ρµx)]

e−FFHT (x)Φ(
√

ρµx) + eFFHT (x)[1− Φ(
√

ρµx)]
.
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FHT’s AdaBoost: Convergence
By calculation, the iteration becomes

FFHT (x) ← FFHT (x) +
s2(x)

2

[
ln

(
Φ(
√

ρµx)

1− Φ(
√

ρµx)

)
− 2FFHT (x)

]

=
1

2
ln

(
Φ(
√

ρµx)

1− Φ(
√

ρµx)

)
.

Remark 1. One-step convergence
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Bayes Risk EX,θ{1[g(θ)F (X)<0]}
Difficulty of the problem

Overfitting

Eπ(θ|x)g(θ) = 2Φ(
√

ρµx)− 1 and
sgn(Fπ(x)) = sgn(Eπ(θ|x)g(θ)).

Let r = τ/σ > 0 and assume µ = 0

EX,θ

{
1[g(θ)F (X)<0]

}
=

∫ 0

−∞
Φ(t)η(t)dt +

∫ ∞

0
[1− Φ(t)]η(t)dt

= 2

∫ u=0

u=−∞
Φ(ru)dΦ(u)

where η(t) ∼ N
(√

σ2+τ2

στ µ, τ2

σ2

)
.
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Bayes Risk: h(r)

Define

h(r) = 2

∫ u=0

u=−∞
Φ(ru)dΦ(u).

Since h(1) =
∫ 1/2
0 ΦdΦ +

∫ 1
1/2(1− Φ)dΦ = 1

4 and

h′(r) = −[π(1 + r2)]−1.
Thus

EX,θ

{
1[g(θ)F (X)<0]

}
= h(r) =

1

2
− 1

π
tan−1 r. (2)
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Summary
Consistency of FPIB and FFHT

AdaBoost FFHT yields a highly effective one-step
convergence under our distributional assumption

Bayes Risk
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Concluding Remark
For the classification problems we formulated, our
population version results suggest AdaBoost is
extremely effective and no regularization needed.

Contrast with current “statistical view” of boosting:
+distribution assumption; −base learner/target learner
assumptions.

Distribution modelling can provide alternative “statistical
view” to the boosting.

Thanks for your attention!
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