

Department of Physics National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974, Taiwan

General Physics I, Midterm 2 PHYS10000AA, AB, AC, Class year 109-2 04-01-2021

SN:_____, Name:_____

Note: You can use pencil or any pen in answering the problems. Dictionary, calculators and mathematics tables **are** allowed. Please hand in both solution and this problem sheet. **ABSOLUTELY NO CHEATING!**

Problems (20% each, total 6 problems, 120%)

- 1. <u>Entropy:</u> (25%) In an adiabatic free expansion, an ideal gas of volume V_i at original temperature T was free-expanded to a volume of V_f in an isolated system. (a, 5%) Explain what does it mean by "an adiabatic free expansion"? (b, 15%) What is the entropy change of this free expansion process of the gases, and (c, 5%) justify your answer.
- 2. **Dipole:** (35%) (a, 15%)Derive the electric field set up by a pair of positive and negative charges of charge q. The charges are vertically standing separated by a distance d (in the *z*-axis direction). If we take the center of mass of the charges systems to be the origin of our coordinate system, and the vertical axis is the *z*-axis. What is the electric field intensity at a z distance from the origin that can be observed?(b, 10%) Now, if the dipole is making an angle ϕ with respected to the *z*-axis, and an uniform electric field is applied perpendicular to the *z*-axis (from left to right) making an angle θ with the dipole, What is the torque that can be generated by the electric field? (c, 10%) If this electric field is to flip the dipole from an initial angle θ =90° to an angle θ , how much work is needed?
- 3. <u>Spherical capacitor:</u> (10%) A spherical capacitor is consisted of two concentric spheres of radius *a* and *b*, where *b*>*a*. The outer sphere carries a charge -Q, and the inner sphere has a +Q charge. What is the capacitance of this set up?
- 4. <u>Gauss law:</u> (40%) (a, 10%) What is Gauss law? Explain it. (b, 10%) Use Gauss law to calculate the electric field due to a charged spherical shell of radius *a*. What is the electric field at a distance r (r>a) from the center of the spherical shell? (c, 10%) What is the electric field at a distance r<a? (d, 10%) plot the electric field as a function of distance from the origin?</p>

Calculation ne entropy

¥

(1

2. (a) This is the same Problem as in the P23-6 of the lecture
notes.
Refer to the figure to the right
The electric field is the vector
SUM of the two Charges

$$\vec{E} = \vec{E}_{10} + \vec{E}_{10}$$

 $= \frac{1}{4\pi\epsilon_0} \left[\frac{1}{(\vec{r} - \frac{1}{2}d)^2} + \frac{-1}{(\vec{r} - \frac{1}{2}d)^2} \right]$ (Since \vec{r} is a Constant
 $= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(\vec{r} - \frac{1}{2}d)^2} + \frac{-1}{(\vec{r} - \frac{1}{2}d)^2} \right]$ But $\vec{r} > d$
 $= \frac{q}{4\pi\epsilon_0} \left[(1 - \frac{d}{22})^2 - (1 + \frac{d}{23})^2 \right]$ But $\vec{r} > d$
 $= \frac{q}{4\pi\epsilon_0} \left[(1 + \frac{2q}{2\pi} + ...) - (1 - \frac{2d}{23} + ...) \right]$ So we can expand the
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[(1 + \frac{2d}{2\pi} + ...) - (1 - \frac{2d}{23} + ...) \right]$ So we can expand the
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[(1 + \frac{2d}{2\pi} + ...) - (1 - \frac{2d}{23} + ...) \right]$ So we can expand the
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[(1 + \frac{2d}{2\pi} + \frac{2d}{3\pi} - 1 + ...) \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[1 + \frac{2d}{2\pi} + \frac{2d}{3\pi} - 1 + ... \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[1 + \frac{2d}{2\pi} + \frac{2d}{3\pi} - 1 + ... \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \vec{r} \left[\frac{1}{3\pi} - 1 + ... \right] \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \vec{r} \left[\frac{1}{3\pi} - 1 + ... \right] \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \vec{r} \left[\frac{1}{3\pi} - 1 + ... \right] \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \vec{r} \left[\frac{1}{3\pi} - 1 + ... \right] \right]$
 $= \frac{q}{4\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \vec{r} \left[\frac{1}{3\pi} - 1 + ... \right] \right]$
 $= \frac{q}{2\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \frac{1}{3\pi} - 1 + ... \right]$
 $= \frac{q}{2\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \vec{r} \left[\frac{1}{3\pi} - 1 + ... \right] \right]$
 $= \frac{q}{2\pi\epsilon_0} \vec{r} \left[\frac{1}{3\pi} + \frac{1}{3\pi} - 1 + ... \right]$
 $= 2 q \vec{r} \left[\frac{1}{3\pi\epsilon_0} \vec{r} \right]$

2 (c)
The work needed is
$$V_{f} - U_{i}$$

 $U_{f} - U_{i} = \int_{\Theta_{i}}^{\Theta_{f}} \tau d\theta = \int_{\Theta_{i}}^{\Theta_{f}} PEsin\theta d\theta = PE \int_{\Theta_{i}}^{\Theta_{f}} sin\theta d\theta$
 $= PE(\cos \Theta_{i} - \cos \Theta_{f}), \quad \Theta_{i} = 90^{\circ}$
 $\therefore \quad U_{f} - U_{i} = \Delta U = -PE \cos \Theta_{f}$
 $= -P \cdot E$ that is. This much
energy is needed.

4. (a) (in p24-1, and 24, 2)
Qawss law gives the relation of the net electric flux
and Charges enclosed by a closed Surface (alled
Gaussian Surface.

$$p \in E$$
 Example
 $p \in E$ Example
 $p = \frac{Q}{r_1}$ Graves a charge is concertrate in the Gauge is
 $p = \frac{Q}{E}$
 $p = \frac{Q}{$