Diving by \(\frac{dI}{dt} \), \(E = -M_{21} \frac{dI}{dt} \)

we could get the definition of \(M \)

\[
M = \frac{\mu_0}{4\pi} \int \int_S \frac{d\vec{s} \cdot d\vec{a}}{r}
\]

where \(d\vec{s} \) & \(d\vec{a} \) are two element of length

& \(r \) is the distance between them.

This is known as Newton's formula. \(M_{12} = \frac{\mu_0}{4\pi} \int \int_S \frac{d\vec{s} \cdot d\vec{a}}{r} \)

\(M_{12} = M_{21} \)

Final Exam. 6/17 (E) 10:00 AM.

\(\Phi = M.I \).

\[\begin{align*}
\text{Flux} & \quad \text{mutual inductance} \\
\Rightarrow & \quad \text{Energy in magnetic field} \Rightarrow \text{Energy + Density of Energy}
\end{align*} \]

To obtain the energy of an electrostatic field, we calculate the work done by \(E \) in moving charge increment \(dq \).

Then the increment of \(dq \) can be described as \(dq = I dt \).

\[W = \frac{1}{2} L I^2 (t) \]

1. If \(dW = I d\Phi \) is equal to the change in magnetic energy.
2. If there are \(n \) turns circuit, then the work done against the induced emf is given by \(dW = \sum_{i=1}^{n} I_i d\Phi_i \)

Magnetic Energy in terms of field vectors.

For simplicity, we assume that each circuit consist of a single loop, then the flux \(\Phi \)

\[\Phi_i = \int \int_A \vec{n} \cdot d\vec{a} = \int \int_A \vec{n} \cdot d\vec{a} = \oint_{\text{closed loop}} \vec{A} \cdot d\vec{l} \]

\(\Rightarrow \) input the magnetic energy.
For n turns, the function of $dW = \frac{1}{2} \mathbf{I} \cdot \mathbf{Z}$ can be replaced as $W = \frac{1}{2} \mathbf{I} \cdot \mathbf{Z}$. \(\Rightarrow\) Magnetic energy

\[
W = \frac{1}{2} \mathbf{I} \cdot \mathbf{Z} = \frac{1}{2} \int \mathbf{I} \cdot \mathbf{A} \cdot d\mathbf{l}
\]

* The second step: we can change $\mathbf{J} \cdot d\mathbf{l} = (\mathbf{J} \cdot d\mathbf{a}) \cdot d\mathbf{l} = \frac{1}{2} \oint \mathbf{A} \cdot d\mathbf{a}$

\[
\mathbf{J} \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{a} \Rightarrow \oint \mathbf{A} \cdot d\mathbf{a} = \frac{1}{2} \int \mathbf{J} \cdot d\mathbf{a}
\]

* Mathematical method of $\mathbf{B} = \mathbf{v} \times \mathbf{A}$, $\mathbf{v} \times \mathbf{B} = \mathbf{H} \times \mathbf{J}$.

Recalculated $\mathbf{v} \cdot (\mathbf{v} \times \mathbf{B}) = \mathbf{v} \cdot (\mathbf{v} \times \mathbf{A}) - \mathbf{A} \cdot (\mathbf{v} \times \mathbf{B})$

\[
\Rightarrow \mathbf{v} \cdot (\mathbf{v} \times \mathbf{B}) = \mathbf{B} \cdot \mathbf{B} - \mathbf{A} \cdot \mathbf{H} \times \mathbf{J}
\]

\[
\Rightarrow \mathbf{B} \cdot \mathbf{B} - \mathbf{v} \cdot (\mathbf{v} \times \mathbf{B}) = \mathbf{A} \cdot \mathbf{H} \times \mathbf{J}
\]

\[\text{V.I.P.}\]

$W = \frac{1}{2} \int \mathbf{J} \cdot d\mathbf{a}$, we obtain the expression of

\[
W = \frac{1}{2\mu_0} \int \mathbf{B} \cdot \mathbf{B} \, d\mathbf{v} - \frac{1}{2\mu_0} \int \mathbf{v} \cdot (\mathbf{v} \times \mathbf{B}) \, d\mathbf{v}
\]

\[
= \frac{1}{2\mu_0} \int \mathbf{B} \cdot \mathbf{B} \, d\mathbf{v} - \frac{1}{2\mu_0} \oint \mathbf{A} \times \mathbf{B} \cdot \mathbf{n} \, d\mathbf{a}
\]

Explain.

The integrations on the right are to be taken over the entire (volume) occupied by the current with the

Because \mathbf{B} falls off at fast as $\frac{1}{r^2}$

\[
\mathbf{A} \rightarrow \frac{1}{r}
\]

Surface $\mathbf{d} \mathbf{a} \sim r^2$

Then the second term of surface integral vanishes.

\[
W = \frac{1}{2\mu_0} \int \mathbf{B} \cdot \mathbf{B} \, d\mathbf{v}, \text{ when } \mathbf{B} = \mu_0 \mathbf{H}
\]

\[
= \frac{1}{2} \int \mathbf{H} \cdot \mathbf{B} \, d\mathbf{v}, \text{ we may define the}
\]

* Energy density in magnetic field by $W = \frac{1}{2} \mathbf{H} \cdot \mathbf{B}$

\[
W = \frac{B^2}{2\mu_0}
\]
§ 7.13 Example. A long co-axial cubles carries current I.

The outer current I →

inner current I →

Find the magnetic energy stored in a section of length l.

* According to Ampere’s law, $B = \frac{\mu_0 I}{2\pi r}$.

* The magnetic energy per unit volume

$$ U = \frac{1}{2\mu_0} B^2 = \frac{\mu_0 I^2}{8\pi^2 l^2}.$$

* The unit volume of cylinder $U = \int_{\text{volume}} dV$, $dV = 2\pi r dp$.

So the magnetic energy is $U = \int_{l} dU = \int_{a}^{b} \frac{\mu_0 I^2}{8\pi^2 r^2} 2\pi r dp dl$

$$ = \frac{\mu_0 I^2}{4\pi} \int_{a}^{b} \frac{1}{r} dr = \frac{\mu_0 I^2}{4\pi} \ln \frac{b}{a}, \text{ represented with } |. | .$$

$$ U = \frac{1}{2} |. I|^2 \quad |. \frac{\mu_0 I}{2\pi} \ln \frac{b}{a}|$$

HW: 06/10 return

P 7.18 P 7.24

P 7.20 P 7.30

§ 7.3 Maxwell Equation.

2.31. Electrodynamics equation. Before Maxwell

A. Gauss’s Law $\nabla \cdot E = \frac{\rho}{\varepsilon_0}$

$\nabla \cdot B = 0$

Faraday’s Law $\nabla \times E = -\frac{\partial B}{\partial t}$

Ampere’s Law $\nabla \times B = \mu_0 j$

These equations represent the state of EM theory over a century.

The old eggs with the old rule that divergency of
curl is always zero

1. $\nabla \cdot (\nabla \times E) = \nabla \cdot (-\frac{\partial B}{\partial t}) = -\frac{\partial}{\partial t} (\nabla \cdot B) = 0$

2. $\nabla \cdot (\nabla \times B) = (\nabla \cdot j_0) \mu_0 = 0 ?$

Zero only at static steady state; Non-zero at dynamics state.

GEE-JUMP
Maxwell equation & Electromagnetic wave in vacuum.

1. Gauss's Law \(\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \)

2. Absence of magnetic monopole \(\nabla \cdot \mathbf{B} = 0 \)

3. Ampere's Law \(\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \)

4. Faraday's Law \(\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \)

5. The continuity eq. \(\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0 \)

\(\frac{94}{(b)} \) \(\frac{6/17}{(c)} \) Final Exam of EM.

\(\frac{\varepsilon_0}{\rho} \)

\(\frac{7.3.1}{\text{Ampere's Law}} \):
(1) Ampere's Law: \(\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \)
\(\nabla \cdot (\nabla \times \mathbf{B}) = \mu_0 \nabla \cdot \mathbf{J} = 0 \)

at steady, valid for dynamics?

(2) Continuity equation: \(\nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0 \). Charge increment \(\Delta \rho \).

\(\frac{7.3.2}{\text{How Maxwell fixed Ampere's Law for Electrodynamics?}} \)

1. Continuity equation & Ampere's Law, they were all valid even in time varying situation & realize Ampere's Law was to consist with the continuity equation.

2. \(\nabla \cdot (\nabla \times \mathbf{B}) = 0 \), \(\nabla \cdot \mathbf{J} = 0 \).

This indeed true of \(\rho \) does not change with time.

But it is not true when \(\rho \) is changing with time.

\[\frac{\Delta \rho}{\Delta t} = \text{constant} \]

\[\frac{\rho}{t} = \text{constant} \]

\[\frac{\Delta \rho + \rho}{\Delta t} + \text{constant} \]

\[\text{Accel} \]

\[\text{Speed} \]
Using Gauss's law, we can rewrite the continuity eq. as
\[\nabla \cdot J = -\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial t} \left[\nabla \cdot E \right] \]
Replace \(\nabla \cdot \left[\nabla + \frac{\partial}{\partial t} \right] E \cdot J \rightarrow 0 \), \(\nabla \cdot J_{\text{Maxwell}} = 0 \).

So the divergence of curl \(B \) can be rewritten as
\[\nabla \cdot (\nabla \times B) = \nabla \cdot (\mu_0 J_{\text{Maxwell}}) = \nabla \cdot (\mu_0 \nabla + \frac{\partial}{\partial t} \mu_0 E) \rightarrow 0 \]

Maxwell said that if Ampere's law is modified by the addition of a new term the time derivative term.
\[\nabla \times B = \mu_0 J + \frac{\partial}{\partial t} (\mu_0 \sigma_0 E) \]
Mag. Ele.

11) Is valid for steady-state phenomena is also compatible with the equation of continuity of time-dependent fields (dynamics).

2) The term \(\partial E / \partial t \) has the dimensions of current density
\[\nabla \cdot (\varepsilon_0 E + \rho) = \dot{\rho}_E \rightarrow \nabla \cdot D = \dot{\rho}_E \]

Have a look in Gauss's law for Electric & Magnetic fields:
(1) \(\nabla \cdot E = \frac{\rho}{\varepsilon_0} \) + (2) \(\nabla \cdot B = 0 \) (\(\mu_0 \mu_m = 0 \))

Using the free space (\(\varepsilon_0 \) or \(\mu_0 = 0 \))
\[\nabla \cdot E = 0, \quad \nabla \times E = -\frac{\partial B}{\partial t} \]
\[\nabla \cdot B = 0, \quad \nabla \times B = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \]

Replace \(E \) by \(B \) \(\rightarrow \nabla \cdot B = 0, \quad \nabla \times B = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \)

Replace \(B \) by \(-\mu_0 \mu_m \)
\[\nabla \cdot E = 0, \quad \nabla \times E = -\frac{\partial B}{\partial t} \]

There are something missing from \(\nabla \cdot B = 0 \) & \(\nabla \times E = -\frac{\partial B}{\partial t} \)

if we had \(\varepsilon_0, \mu_0 \) & \(m \). (In non-free space)
We have
1) \(\nabla \cdot E = \frac{\rho}{\varepsilon_0} \)
2) \(\nabla \times E = -\mu_0 \mu_m - \frac{\partial B}{\partial t} \)
3) \(\nabla \cdot B = \mu_0 \mu_m \)
4) \(\nabla \times B = \mu_0 \mu_0 \frac{\partial E}{\partial t} \)

\(\varepsilon_m \): magnetic charge density.
\(J_m \): magnetic current density.
"Maxwell's equation beg for the existence of magnetic charge" 7.35, 7.36