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4. Discrete-Time Markov Chains (DTMC) 
 
 A discrete-time stochastic process is a sequence of random variables {Xn} indexed on 
a countable set {n}.  Usually, the random variables Xn are dependent and hence stochastic 
processes are hard to analyze.  Fortunately, we start with Discrete-Time Markov Chains 
(DTMC), a special type of stochastic processes.  The simple dependence among Xn leads to 
nice results under very mild assumptions.   
 

DTMC can be used to model a lot of real-life stochastic phenomena. For example, Xn 
can be the inventory on-hand of a warehouse at the nth period (which can be in any real time 
units), the amount of money that a taxi driver gets for his nth trip, or the potential profit of 
the nth investment opportunity faced by a fund manager.  Frequently, we would like to know 

terms such as ,lim 1

m
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  which may be the average inventory on hand, the average reward 

per trip, and the average potential profit from an arriving opportunity.  Similarly, nice 
physical meanings can be assigned to a term such as ).(lim kXP n

n



  It turns out that there 

are simple ways to calculate such limiting terms for DTMC. 
 
 
4.0. Motivation to Study DTMC 
 
 The Strong Law of Large Numbers (SLLN) is one of the most widely applicable 
results to analyze the convergence of i.i.d. random variable {Xn}.  Let E(X) < .  The SLLN 

says that 
X

n

i
i

n




1  E(X)  (w.p. 1). 

 
 
Example 4.0.1.  SLLN   
 
(a). Suppose that one throws a fair dice repeatedly for n times, where n is “large”.  Then, 
by the SLLN,  the average value of all throws is close to 3.5, the expected value of a throw. 
 
(b).       To study the probability of an unfair dice, one can throw the dice for n times, where n 
is large.  Then the probability of getting the face i in a throw is roughly equal to the fraction 
of times that face i appears.  
 
 
 While SLLN gives nice results of i.i.d. random variables (under some other conditions, 
e.g., finite first moment), many random variables in real-life problems are in fact dependent. 
 
 
Example 4.0.2.  Sequence of Dependent Random Variables 
 
(a). John does a part-time job to support his study.  He gets $700 every Sunday morning, 
and he uses up $100 every day.  Let Xn = the amount of money (in $100) that John has at the 
morning of the nth day;  the first day is arbitrarily set at March 11, 2002, Sunday.  Then,     
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and {Xn} is a sequence of dependent (random) variables.   
 
(b). A shop keeps at most 4 pieces of the brand Accurate watch.  On every Sunday 
evening, the shopkeeper counts the number of Accurate watches that the shop has, and orders 
up to an inventory position of 4 watches if there is one or no Accurate watch in the shop.  
Any quantity ordered will be sent to the shop on Monday right before the shop is opened for 
business. Any customers who fail to find an Accurate watch will go away without coming 
back.  Let Dn be the demand of Accurate watches in the nth week, and Yn be the inventory 
position of Accurate watches in shop on the nth Sunday evening before any new order is 
made. Then   
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Suppose that Dn are i.i.d. random variables.  Then the distribution of Yn+1 is determined 
(completely) by Yn and {Yn} is a sequence of dependent variables. 
 
 
(c). Initially there are 5 red balls in Box 1 and 5 white balls in Box 2.  At each time period, 
a ball is randomly selected from each of the two boxes and put into the other box.  Let Zn be 
the number of red balls in Box 1 after the nth switch;  Z0 = 5.   
 

 Zn+1 = 
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The distribution of Zn+1 is determined completely by Zn and { Zn } is a sequence of dependent 
variables.   
 

Given Zn = k, the probabilities of the events {the ball drawn from Box 1 is red while 
from Box 2 is white}, {the balls drawn are of the same color}, and {the ball drawn from Box 
1 is white while from Box 2 is red} can be completely determined.   
 

 
{Xn}, {Yn}, and {Zn} in Example 4.0.2 are dependent variables.  Will the mean of 

their partial sum converges to something?  Clearly, for the simple case (a), 
m
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 The above problem leads to an interesting extension:  Suppose that {Xn} is a sequence 
of dependent random variables modeling some real-life problems.  Is it possible to deduce 
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any long-term average such as ?lim 1
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  Can we say anything about ),(lim kXP n
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the limiting distribution of Xn?  For a general system such that one gets a reward cj when Xn = 

j, can we say anything about ?lim
1

m
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  If expected values exist, are they easy to find?   

Our interest is more than the limiting distributions.  Suppose that there are three watches in 
the shop on the third Sunday, what is the probability that the shop needs to re-order watches 
on the 8th week?  If the weather can be modeled by a DTMC and the weather now is cloudy, 
what is the probability that it will rain 10 days later?  All these are interesting, useful, and 
challenging questions.  It turns out that many of these questions have easy answers if {Xn} is 
a DTMC (with minor structural conditions). 
 
 
4.1. States and Time of Markov Chains 
 

DTMC are sequences of dependent random variables {Xn} with nice conditional 
probability structure.  They have been used widely to model real-life problems, and they are 
building blocks for more complex, advanced applications.   

 
Obviously the process {Xn} is of discrete-time:  the index n takes up discrete values.  

In this course, we take n  {0, 1, 2, …}.   
 
The state of {Xn}, S, is the set of all possible values (or status) to be taken up by the 

process {Xn}.  Usually, we take the state to be the whole set or a subset of non-negative 
integers.  In fact, for many cases, we can assign physical meanings to each state.  For 
example, in modeling the condition of a machine that has four states, states 0, 1, 2, and 3 can 
mean, respectively, “break down”, “idle”, “under repair”, and “working”, and S can either be 
taken as {0, 1, 2, 3} or {“break down”, “idle”, “under repair”, “working”};  the latter can also 
be shortened to {b, i, r, w}.   

 
 

4.2. Markov Property 
 

A DTMC {Xn} possesses the Markov property, i.e.,  
 

P(Xn+1 = j | Xn, Xn-1, ..., X1) = P(Xn+1 = j | Xn), for any n  0 and for any j  S. 
 
This random-variable version is equivalent to 
 

P(Xn+1 = j | Xn = i, Xn-1, ..., X1) = P(Xn+1 = j | Xn = i), for any n  0 and for any i, j  S. 
 
This property shows that {Xn} has very peculiar dependence: given the current state Xn, the 
distribution of the future states of the DTMC is completely determined and is independent of 
the past (Xn-1, ..., X1).  [More technically, given the current state (Xn), the future ({Xn+1, …}) 
is conditionally independent of the past ({X1, …, Xn-1}).] 
 
  
4.3. Stationary Transition 
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We only consider {Xn} with stationary transition, i.e.,  P(Xn+1 = j | Xn) = P(X1 = j | X0) 

for all j and n.  With this assumption, the analysis of DTMC becomes very simple. 
 
 
4.4. Defining a DTMC 
  
 The procedure to define a DTMC is to:  
 
(a) specify the states,  
(b) demonstrate the Markov property, and  
(c) find the (stationary) probability transition matrix, which is in the form 
 

 .
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Remark 4.4.1.  Each row of P specifies a conditional distribution, e.g, the first row is the 
conditional distribution of (X1| X0 = 0), and the second row is the conditional distribution of 
(X1| X0 = 1).  Clearly, each row of P sums up to 1. 
 
 
Example 4.4.2.   
 
(a). i.i.d. random variables 
 
 Let Xn = 1 if the nth flip is a head, and Xn = 0 otherwise;  n = 0, 1, 2, ... .  Suppose that 
the coin gives a head with probability p, 0 < p < 1.  Is {Xn} a DTMC? 
 
Sol.  Let the state space be {0, 1}.  We need to  
(i)  show that the Markov property holds; 
(ii)  show that the transitions are stationary;  
(iii)  define the (stationary) transition probability matrix.   
 
By the independence of the flips, 
 

P(Xn+1 = 1 | Xn, Xn-1, ..., X1) = P(Xn+1 = 1) = P(Xn+1 = 1 | Xn) = p,      
P(Xn+1 = 0 | Xn, Xn-1, ..., X1) = P(Xn+1 = 0) = P(Xn+1 = 0 | Xn) = 1-p, 

 
which complete (i)(iii) simultaneously.  The transition probability matrix is 

        .
1

1
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The transition matrix can easily be represented by a transition diagram: 
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(b). Two Gamblers  
 
 Peter and Sam bet against each other.  Each time one of them flips a coin, which gives 
a head with probability p, 0 < p < 1.  If the coin lands head, Peter wins one dollar from Sam;  
otherwise Sam wins a dollar from Peter.  Initially Peter has $c1 (> 0) and Sam $c2 (> 0);  the 
game ends when one of them is out of money.  Given that all flips are independent from each 
other, can this be modeled as a DTMC? 
 
Sol.  Define c = c1+c2.  Let Xn be the amount of money that Peter has after the nth flip;  Xn  
{0, 1, …, c};  X0 = c1.  
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Clearly, given the amount of money that Peter has after the nth flip, the (n+1)st flip 
completely determines the amount of money that Peter owns after the (n+1)st flip;  the 
history of prior flips and of prior amount of money owned by Peter play no part.  Thus, the 
process has Markov property.  The independence of flips shows that the process has 
stationary transition.  The question is to find the transition probability matrix.   
 
Given that Xn = c, the game ends, and Xn+1 = Xn+2 = ... =  c.  Similarly, given Xn = 0, the game 
ends, and Xn+1 = Xn+2 = ... =  0.  For Xn = i, 1  i  c-1, P(Xn+1 = i+1 |Xn = i) = p, P(Xn+1 = i-1 
|Xn = i) = 1-p.  The probability transition matrix is:     
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Can we deduce the probability that Peter eventually wins or deduce the expected length of 
the game before it stops?   
 
(c). Inventory [Cont’n of Example 4.0.2(b)] 
 
 Is {Yn} in Example 4.0.2(b) a DTMC?   
 
Sol.  The sample space of {Yn} is dependent on that of Dn.  For example, if Dn can only be 1 
or 0, then the state space of {Yn} is {1, 2, 3, 4};  if Dn can only be zero or two, the state space 
is {0, 2,  4} if Y0  {0, 2,  4}, and is {0, 1, 2,  4} or {0, 1, 2,  3, 4} dependent on whether Y0 = 
1 or Y0 = 3.              
 

Here, we consider the general case in which Dn can take up any non-negative integer 
values.  The state space of {Yn} will then be {0, 1, 2, 3, 4}.  From the problem statement, we 
know that  
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Such an expression shows that given Yn the distribution of Yn+1 does not depend on {Y0, …, Yn} 
and hence {Yn} is a Markov process.  It has stationary distribution since Dn’s are i.i.d.  To 
find probability transition function, let P(Dn = i) = i, i = 0, 1, 2, … .  Then 
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You may draw the transition diagram by yourselves. 
 
 
(d). Weather 
 



  7   

 The weather tomorrow is dependent on today’s weather.  If today is rainy, half of the 
times that tomorrow will also be  rainy; 40% will be cloudy;  10% will be sunny.  If today is 
cloudy, 20% of the times that tomorrow will be rainy;  40% will be cloudy;  40% will be 
sunny.  If today is sunny, 10% of the times that tomorrow will be rainy;  20% will be cloudy;  
70% will be sunny.  Can this be modeled as a DTMC?   
 
Sol.  The state space of a DTMC needs not be integer.  It can be any discrete quantity 
so long as physically such a construction makes sense.  In this case, let Xn be the 
random quantity denoting the weather of the nth day; Xn  {rainy, cloudy, sunny}.  
The problem statement says that the weather tomorrow just depends on today’s 
weather, which is Markov.  The statement also shows that the transition probability is 
stationary.   
 

P = 

05 0 4 01

0 2 0 4 0 4

01 0 2 0 7

. . .

. . .

. . .

.

















  

 
 
Exercise 4.4.3.  Show that the processes in (a) and (c) of Example 4.0.2 are indeed DTMC.  
Find their transition probability matrices.  

 
 
4.5. Chapman-Kolmogorov equations 
 

 Let )|( 0
)( iXjXPp n

n
ij   be probability that {Xn} moves from state i to state j in 

n steps.  The Chapman-Kolmogorov equations are recursive relation relating  )(n
ijp  to 

 )1( n
ijp , and hence one can find )(n

ijp from the one-step transition probabilities )1(
ijp = pij = 

P(X1 = j|X0 = i).  
 

)(n
ijp  = P(Xn = j|X0 = i) =  



0
01 )|,(

k
n iXkXjXP  

=  


0
01 )|,(

k
n iXkXjXP  = 








0
)(

),,(

0

01

k
iXP

iXkXjXP n   

= 







0
)(

),(),|(

0

0101

k
iXP

iXkXPiXkXjXP n  

=  


0
0101 )|(),|(

k
n iXkXPiXkXjXP   

=  


0
011 )|()|(

k
n iXkXPkXjXP   

 

=  





0
0101 )|()|(

k
n iXkXPkXjXP = 







0

)1( .
k

n
kjik pp  

 



  8   

Similarly, one can show that .
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 From the expression of )2(
ijp , one can see that P(2)

 = P2;  in general, we have P(n) = Pn.   

 
Example 4.5.1.  [Cont’n of Example 4.4.2 (d)]  n-step transition probability 
 
 Suppose that the weather across days is a DTMC following the transition probability 
in Example 4.4.2 (d).  Given that today is cloudy, find 
 
(a) the probability that it is sunny two days later; 
(b) the probability that it is sunny ten days later. 
 
Sol.  To simplify notation, we use r, c, and s to represent the states, where r stands for rainy;  

c for cloudy;  s for sunny.  We are asked to find pcs
( )2  = P(X2 = s|X0 = c).  We may apply 

Chapman-Kolmogorov equation to get the answer.  Since the problem is simple, we solve it 
from the first principle.      
 
 P(X2 = s|X0 = c) = P(X2 = s and {X1 = r or X1 = c or X1 = s}|X0 = c )  
= P(X2 = s, X1 = r|X0 = c ) + P(X2 = s, X1 = c|X0 = c ) + P(X2 = s, X1 = s|X0 = c ) 
 
Let us digress a bit to see a generic way to simplify P(AB|C) for events A, B, and C. 

P(AB|C) = P A B C
P C

( )
( )
   = )(

)(
)(

)(
CP

CBP
CBP

CBAP 

  = P(A|BC)P(B|C).  Applying this result to 

 
P(X2 = s, X1 = r|X0 = c )  

=  P(X2 = s|X1 = r, X0 = c) P(X1 = r|X0 = c) 
= P(X2 = s|X1 = r) P(X1 = r|X0 = c)   (Markov Property) 
= P(X1 = s|X0 = r) P(X1 = r|X0 = c)   (stationary transition) 
= pcrprs.   
 
 P(X2 = s|X0 = c) 
= pcrprs + pccpcs + pcspss = (0.2)(0.1) + (0.4)(0.4) + (0.4)(0.7) = 0.46. 
 
 

(b). We are asked to find pcs
( ) .10   One may apply Chapman-Kolmogorov equation 

recursively to get p ,
( ) ,2 p ,

( ) ,3 .., till pcs
( ) .10   However, a neater way is to find 

 

 P(10) = P10 = P2P8 = (PP)(PP)4 = 
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0 22 0 32 0 46
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. . .

















0 2187 0 3053 0 4760
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. . .
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Hence, pcs
( )10  = 0.4782.  

 
 
4.6. Long-Term Averages and Limiting Distribution 
 
 For i.i.d. random variables Xk, under very mild conditions (e.g., E(X) < ), 

).(lim 1 XE
n

X

n

n

k
k





   We would like to know whether a similar result hold for DTMC, and if it 

indeed exists, we would like to find a quick way to calculate it.  Such results are useful in 

daily operations.  For example, if Xn is the on-hand inventory of the n time unit, 
n

X

n

n

k
k


1lim  

will be the long-run average inventory (of the chosen inventory policy), which can be used to 
determine the long-run average inventory cost.  In the following, we first argue heuristically 
the value of such a limit, if it exists.  Then we stay the theorem formally to justify the results.         
 
 Suppose that for any j, j = ),|(lim 0XjXP n

n



 i.e., the limiting probability of state 

j exists, and is independent of the initial state.  Naturally, j j = 1.  The assumption suggests 
the following results.  
 
(a) Intuitively, this result says that for “large” n, Xn’s behave as if they are i.i.d.  So j 
should also be the fraction of time the chain in state j.   
 
(b) When n is large, the proportion of time in (periods in, visits to) state j (roughly) j.  
The number of times (periods, visits) that the chain is in state j  jn, each time contributing a 

value of j to j Xj.  Then n

X
n

k
k

1   n

nj
j

j 
 =  j jj  for large n.    

 
(c) Suppose that a cost of cj is incurred for each time visit of state i.  By the same 
argument as in (b), the long-term average reward   j jjc .   

 
(d) (An intuitive argument to get j)  This is established by a conservation law:  the rate 
(number of occurrences per unit time) into any state must be equal to the rate out of the state.  
Consider again “large” n.  The DTMC (roughly) visits state j for jn times (periods), which is 
also the number of departures from state j.  Thus, the rate of departure from state j  j 
(which, later, is shown to be exact).  Now consider the rate into state j.  The DTMC visits 
state i for in times.  For each visit of state i, it will next visit state j with probability pij.  
Hence for large n, the number of i to j transitions  ipijn.  The total number of visits to state j 
  i iji np ,  and the rate of into state j   i iji p (again, this rate is actually exact).    

Equating the into and out of rates, 
 
 j =  i iji p ,   for any j.      (balance equation) 

 
For an M-state DTMC, there are M equations, one for each state, and M unknowns.  However, 
the equations are linearly dependent and there are only M-1 degree of freedom.  Fortunately, 
there is one more equation 
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 .1 j j   (normalization equation) 

 
 
 The above results are nice.  However, it is under the assumption that for any j, j = 

).|(lim 0XjXP n
n




  Moreover, even if the limiting probabilities actually exist, we still need 

to justify our heuristic argument.   
      
 

 Does j = )|(lim 0XjXP n
n




 for any j?  Arbitrarily consider .
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We find that 
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9522.00224.00254.0

8995.00543.00.0462(5)P ,  ,
9707.00112.00180.0
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P  and  
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9707.00113.00181.0

9707.00113.00181.0
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P   for n  25, P(n) becomes a matrix such that all entities within a 

column have the same value.  This shows that indeed lim ( | )
n

nP X i X


 0  exists for this P (i.e., 

P() exists).  Based on our heuristic argument, 0 = 0.0181, 1 = 0.0113, and 2 = 0.9707;  

n

X

n

n

k
k


1lim  = 1+22 = 1.9527.  If a cost of ci, i = 0, 1, 2, is incurred for each time that state i is 

visited, then the average reward will be 0c0 + 1c1 + 2c2 = 0.0181c0 + 0.0113c1 + 0.9707c2. 
 
 Everything looks nice, doesn’t it? 
 
 
Example 4.6.1. 
 
(a). (P() does not exist.)  A guard takes alternate weekly day and night shifts.  The pattern 
goes on forever.  Let Xn = 1 if the guard has day shift in the nth week;  Xn = 0, otherwise.  It 

readily seen that {Xn} is a DTMC with the transition probability matrix P = .
01

10






   For this 

P, Pn = 







10

01
 when n is even, and Pn = 








01

10
 when n is odd.  So )|(lim 0XjXP n

n



 does 

not exist for all j. 
 
 In retrospect, the above result is not surprising at all.  After all, the change of states 
follows a fixed pattern, 1 (day shift), 0 (night shift), 1 (day shift), 0 (night shift), … forever 
and hence lim ( | )

n
nP X i X


 0  cannot exist. 

 
(b). [Cont’n of Example 4.2.2 (b);  P() exists but the rows are different.]  Suppose that 
Peter and Sam totally has 3 dollars and they bet with a fair coin.  Then the transition 



  11   

probability matrix P is .

1000

5.005.00

05.005.0

0001
















  Then P() = .

1000

3/2003/1

3/1003/2

0001
















  Note that unlike the 

previous case, while the limit exists, now the rows of P are different.        
 
 
 The example shows that there are loopholes in our heuristics argument.  Here we will 
give simple conditions such that the nice results (a)-(d) and the existence of limiting 
probability indeed exist.  It turns out that it is related to the connectivity and the periodicity of 
the states (chains).    
 

State j is accessible from state i (state i can reach state j), i  j, if )(n
ijp  > 0 for some n.  

Graphically, it just means that in the transition diagram, there is a directed path (sequence of 
transitions with non-zero probabilities) starting from state i and ending at state j with n line 
segments (n transitions).  States i and j communicate with each other, denoted by i  j, if i 
 j and j  i.  If all states of a DTMC communicate with each other, the chain is said to be 

irreducible.  Mathematically, it means that there is an n (> 0) such that )(n
ijp  > 0 for all i, j.  

The simplest way to check whether a small DTMC is irreducible or not is by drawing out its 
transition diagram.    

 
 
Exercise 4.6.2.  Connectivity of DTMC  
 
 Which of the following DTMC’s are irreducible?  The missing numbers of the 
transition probability matrices are all zero. 
 

(a). 







10

01
 (b). 








01

10
 (c). 








01

8.02.0
 

 
 

(d). 



















8.02.0

4.06.0

1

9.01.0

7.03.0

 (e). 



















8.02.0

4.01.05.0

1

9.01.0

7.03.0

 (f). 



















1.07.02.0

4.01.05.0

1

9.01.0

7.03.0

 

 
  
 
 

State i is of period d if d = HCF{n > 0| )(n
iip > 0}.  A state is aperiodic if d = 1.   

 
 
Fact 4.6.4.  States in an irreducible chain have the same period.  An irreducible chain is 
aperiodic  if d (of any state) = 1.    
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Example 4.6.5.  Periodicity of Chains 
 
 Find the periodicity of the following chains. 
 
(a). 

 
(b). 

 
(c). 

 
  
 
 
 
(d). 

 
(e).  

 
 

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0

1 2

3
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(f). 

 
  

A state can be classified according to how the chain returns to it.  State i is recurrent  
if P(return to state i|X0 = i) = 1;  else it is transient.  A recurrent state is positive (recurrent) if 
E(return to state i |X0 = i) < , and is null recurrent if E(return to state i |X0 = i) = .  States 
that communicate with each other are of the same type.   

 
One of the most important results in the theory of DTMC is that , in terms of fraction 

of time, indeed exists for positive, irreducible chains.  
 

 
Theorem 4.6.6.  An irreducible DTMC {Xn} is positive iff there exists unique nonnegative 
solution to  
 

 ,1
0

 


j
j   (normalization equation) 

and  j = ,
0

ij
i

i p



 for all j.  (balance equations) 

 
{j} are called stationary (steady-state) distribution of {Xn}.  
 
 
Exercise 4.6.7.  Let  be a nonnegative probability distribution that satisfies balance 
equations of a positive irreducible chain.  Show that  is the stationary distribution, i.e., if X0 
~ , then Xn ~ .    
 
 
Remarks 4.6.8.  The stationary distribution  of an irreducible positive DTMC has some nice 
properties:   
 
(a). j is also the long-run proportion of time that state j is visited, i.e.,   

 j = .
1

lim 1
}|{ 0

n

n

k
iXjX

n

k






 

 
(b). A third interpretation of j is that it is the long-run proportion of expected time that 

state j is visited, i.e.,   

0

1 2

3



  14   

  

j = .lim
]|1[

lim 1

)(

1
0}{

n

p

n

iXE
n

k

k
ij

n

n

k
jX

n

k



 









 

 
(c). If a cost cj is incurred whenever state j is visited, then the long-run average cost is 

given by .lim
0

1 
 





 i
jj

n

k
X

n
c

n

c
k

  The long-run average expected cost 
n

cE
n

k
X

n

k 









1
lim  

is also given by .
0

 


j
jjc  

 
(d). If a random cost Cj is incurred whenever state j is visited, then the long-run average 

cost .)(lim
0

1  
 





 j
jj

n

k
X

n
CE

n

C
k

  Similarly, the long-run average expected cost 

n

CE
n

k
X

n

k 









1
lim  is also given by .)(

0
 


j
jj CE    

 
(e). If the chain is aperiodic, .)|(lim 0 in

n
XiXP 


  

 
 
Example 4.6.9.  [Cont'n of Example 4.4.2(d)] 
 
 Denote the rainy, cloudy, and sunny state of the chain in Example 4.4.2(d) by r, c, and 
s.  Let r, c, and s be the fraction of time that the chain is in state r, c, and s, respectively.  
Then the balance equations give 
 
   r + c + s = 1, 
   0.5r + 0.2c + 0.1s = r, 
and   0.4r + 0.4c + 0.2s = s. 
 
Solving, r = 5/23, c = 7/23, and  s = 11/23. 
 
(a) Fraction of rainy days = 5/23;  fraction of cloudy days = 7/23;  fraction of sunny days 
= 11/23.   
    
 (b) A subcontractor can earn $100 in a sunny day, $30 in a cloudy day, and -$10 in a 
rainy day.  The long-term average money earned per day = 100r + 30c - 10s = .23

600  

    
(c) Instead of (b), suppose that the amount earned by the subcontractor in a sunny, cloudy, 
and rainy day distributes, respectively, as unif[50, 150], exp(1/30), and –10 dollars.  Then the 
long-term average money earned per day is still 100r + 30c - 10s = .23

600   
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(d) Suppose that a penalty cost $10 is induced every time the weather changes from 
sunny to rainy.  To find the long-run average penalty cost due to such a weather change, re-
define 
 

 Cs = 


 

.,.

 , given that  if

0

,10 1

wo

sXrX nn   and Cr = Cc = 0. 

 
From (d) of Remark 4.6.8,  the long-run average penalty cost = 10spsr = s.    
 
  
Exercise 4.6.10.  (Exercise 14.6-8 of Hillier and Lieberman) 
 
 A production process contains a machine that deteriorates rapidly in both quality and 
output under heavy use, so that it is inspected at the end of each day.  Immediately after 
inspection, the condition of the machine is noted and classified into one of the four possible 
states: 
 

State Condition 
0 Good as new 
1 Operable – minimum deterioration 
2 Operable – major deterioration 
3 Inoperable and replaced by a good-as-new machine 

 
The process can be modeled as a Markov chain with its (one-step) transition matrix P given 
by 

.

0001
2
1

2
100

8
1

8
1

4
30

16
1

16
1

8
70



















   

 
(a). Find the steady-state probabilities. 
(b). If the costs of being in states 0, 1, 2, 3 are 0, $1,000, $3,000, and $6,000, respectively, 
what is the long-run expected average cost per day?  
 
   
4.7. First Passage Times 

 
The first passage time in going from state i to state j, Tij, is the number of transitions 

taken to visit state j for the first time given that X0 = i, i.e., Tij is the n such that {Xn = j, Xn-1  
j, ..., X1  j|X0 = i}.  Tii is called the recurrence time for state i.  Let ij = E[Tij].  There is a 
simple way to calculate ij for a fixed j if P(visit j | X0 = i) = 1 for all i.  In that case, ij’s 
satisfy the set of equations  

 

ij = 1 +  
 jk

kjikp ;  and for i  j, 
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and  jj = 1 + p jk kj
k j



 .    

 
For a positive recurrent chain, jj can be found easily from j = 

jj
1  (why?).    

 
 
Example 4.7.1.    Consider the transition probability matrix 
 

P = .

368.0368.0184.008.0

0368.0368.0264.0

00368.0632.0

368.0368.0184.008.0



















  Suppose that there are X0 = 3.  Find the 

expected time until state 0 is visited for the first time. 
 
Sol.  The chain is finite-state irreducible and hence we can apply the equations: 
 
 30 = 1 + p3110 + p3220 + p3330    30 = 1 + 0.18410 + 0.36820 + 0.36830

 20 = 1 + p2110 + p2220 + p2330    20 = 1 + 0.36810 + 0.36820 

 10 = 1 + p1110 + p1220 + p1330    10 = 1 + 0.36810 

 
Solving, 10 = 1.58, 20 = 2.51, and 30 = 3.50. 00 can be found from 10, 20, and 30.  A 
quicker way is that 
 
 0 = proportion of time that state 0 is visited = 1

00 ,  since on average the chain visits 

state 0 once for a duration of 00 and the chain stays there for one period of time.  
 
 
4.8. Absorption States 
 
 In the gambler’s ruin problem, there are two absorption states, one denoting that Peter 
wins and the one denoting that Sam wins.  To find the probability that Peter wins is 
equivalent to determine the probability of absorption by the absorbing state 0. 
 
 Let fi = the probability of absorption by the absorbing state 0 given that X0 = i.  If state 
0 is the only absorbing state, then fi = 1 for all i.  Otherwise, fi can be found from the 
following set of equations: 
 

 fi = ,
0

j
j

ij fp



  for i = 0, 1, ...; where fk = 1, and fi = 0 if state i is another absorbing 

state. 
 
 
Example 4.8.1.  Gambler’s ruin problem. 
 
 Suppose that the probability transition matrix of a gamblers’ ruin problem is given by  
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P = .

10000

0100

0010

0001

00001
























pp

pp

pp

  Find fi for i = 1, 2, and 3. 

 
Sol.  The equations are  
 
 f1 = (1-p) + pf2, 
 f2 = (1-p) f1 + pf3, 
and f3 = (1-p) f2. 
 
We get fi by solving these equations.  In general, for a Gambler’s ruin problem with state 

space {0, 1, …, M}, 1-fi = 




m

m

i

m

m

M












0

1

0

1  = 
1

1
05

05
















i

M

i
M

p

p

,

,

. ,

. ,

for 
 for i = 1, 2, ..., M, where  = 1 p

p .

  
 
 
Exercise 4.8.2.  Suppose that the weather can be modeled as a four-state DTMC with state 

space {rainy, cloudy, windy, sunny} and the transition probability matrix .

6.01.02.01.0

2.03.01.04.0

2.03.03.02.0

1.02.02.05.0
















  

Given that today is cloudy, find the probability that the weather changes into a sunny day at 
an earlier time than a rainy day.    
 
Remarks on Chapter 4 of Ross.  We will cover Sections 4.1, 4.2, 4.4, 4.5.1, and 4.6 of the 
chapter.  While we don’t go deep in Section 4.3, we will state results deduced from the 
material in the section.  Examples 4.19 and 4.20 look hard, though they are very educational.  
Roughly speaking, problems #3.1 to #3.56 are useful for understanding DTMC.  Students 
may like to try those with probabilistic rather than mathematical flavor.       


