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6. Separable Programming 

 

Consider a general NLP 

 

min f(x) 

s.t. gj(x)  bj, j = 1, …., m.    

 

Definition 6.1.  The NLP is a separable program if its objective function and all constraints 

are consisted of separable functions, i.e.,  

  f(x) = 
1
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and all xi are non-negative variables bounded above, i.e., 0  xi  i for some i, i = 1, …, n.   

  

 

The technique separable programming basically replaces all separable functions, in 

objectives and constraints, by piecewise linear functions.   

 

Definition 6.2.  A convex program is an NLP that minimizes a convex function or 

maximizes a concave function over a convex set.     

 

Fact 6.1.  Any (continuous) convex function can be approximated to any degree of accuracy 

by a piecewise linear convex function.    

 

 From Fact 6.1, when fj and gij are convex functions, they can be approximated to any 

degree of accuracy by piecewise linear functions.  Eventually, such an NLP of piecewise 

convex functions can be represented by a linear program (LP).  Thus, effectively a separable 

convex program can be approximated by a sequence of LPs to any degree of accuracy.         

 

Note also that when fj and gij are convex, an local minimum is in fact a global minimum.   

 

Example 6.1.  NLP1 is: 

 min 21
2
1 2 xxx   

 s.t.  x1 + 2x2  5, 

   2x1 + x2  9, 

   x1, x2  0. 

The above is a separable program with f1(x1) = 
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1
2
1 2xx   and f2(x2) = -x2.  f2 is linear.  The problem is easy to solve if f1, i.e., 2

1x  is 

approximated by a linear function. 

 

From the constraints, x1  4.5.  Let us approximate the non-linear function y = 2
1x  by 

a piecewise linear function.  For simplicity, we take a function of three linear pieces, with 

break points at 0, 2, 4, and 4.5.  The same procedure can be applied to any number of break 

points at any values. 

 

points O A B C 

x1 0 2 4 4.5 

y 0 4 16 20.25

 

There are two ways, the - and the -forms, to represent the function in piecewise linear 

form.   

 

Definition 6.3. (-form) For any point within a linear segment, its functional value is the 

convex combination of the values of the two break points of the linear segment.  Let i  0 

be the weight of break point i, i = O, A, B, and C.   
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Now reformulate NLP1 into  

 

NLP2 

 

 min 212 xxy   

 s.t.  x1 + 2x2  5, 

   2x1 + x2  9, 

   (1), (2), (3), and (4),  

 x1, x2, i, i = O, A, B, C  0.  
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Constraints (4) can be omitted if NLP 1 is a convex program.  Check that whenever (4) is 

violated by a set of i, the value of the corresponding y is above the three-piece linear 

function, and hence the set of i cannot be a minimum point.    

 

In general, if the NLP is a non-convex program, constraints (4) are needed, though they are 

implemented implicitly through the separable programming extension of the simplex method.  

The pivoting step of the separable programming extension simply ensures that at any time at 

most two adjacent i are in the basis.  It can be shown that such a restricted basis rule will 

lead to the optimum solution.   

 

The idea of separable program is applicable to non-convex programs.  Of course, in those 

cases, the optimum solution can be a local rather than global optimum.   

 

 

Example 6.2.  (Non-Convex problem)   

 

 min f(x),  

 s.t. 1  x  3.   

  

 f(x) is a piecewise linear function (which is not linear 

by itself).  It is obvious that minimum is x* = 1 with f(x*) = 

1.  Let us find this by the idea of separable programming. 

 

 

Let x = 0 + 2A + 3B and y = 0 + 10A + 6B;  and add in the constraint 0 + A + B = 1.  

We take the special attention of (4) that at most two ’s can be positive at any time.       

 

 The problem becomes  

 

 min 0 + 10A + 6B,  

 s.t. 0 + 2A + 3B  3, 

    0 + 2A + 3B  1,  

  0 + A + B = 1, 

  0, A, B  0, and at most two adjacent ’s can be positive at the same time.     

 

After adding in slack variable s, surplus variable u, and two artificial variables a1 and a2, the 

problem becomes   

 

 min 0 + 10A + 6B + Ma1 + Ma2,  
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f(x)



GSLM 52800 Operations Research II  Fall 13/14 

  4   

 s.t. 0 + 2A + 3B + s    = 3, 

    0 + 2A + 3B    u + a1   = 1,  

  0 + A + B      + a2 = 1, 

  0, A, B, s, a1, a2  0,  

and at most two adjacent ’s can be positive at the same time.     

 

 0 A B s u a1 a2 RHS 

 1 10 6 0 0 M M 0 

s 1 2 3 1 0 0 0 3 

a1 1 2 3 0 -1 1 0 1 

a2 1 1 1 0 0 0 1 1 
   

 0 A B s u a1 a2 RHS 

 12M 103M 64M 0 M 0 0 2M 

s 1 2 3 1 0 0 0 3 

a1 1 2 3 0 -1 1 0 1 

a2 1 1 1 0 0 0 1 1 

 

 0 A B s u a1 a2 RHS 

 5 2
3

M  18
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3  

Supposedly 0 is the most negative.  However, since B is in the basis, only A among the 

’s is qualified to be in the basis.   

 0 A B s u a1 a2 RHS 
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 0 A B s u a1 a2 RHS 

 0 8+M 3+2M 0 1M -1+2M 0 1 

s 0 0 0 1 1 -1 0 2 

0 1 2 3 0 -1 1 0 1 

a2 0 -1 -2 0 1 -1 1 0 

 

 0 A B s u a1 a2 RHS 

 0 9 5 0 0 M 0 1 

s 0 1 2 1 0 0 -1 2 

0 1 1 1 0 0 0 1 1 

u 0 -1 -2 0 1 -1 1 0 

   

 

Definition 6.4. (-form) Instead of taking weighted value of break points, we can add up the 

contribution from each linear segment.  Let i be the proportion of the ith segment taken, i = 

OA, AB, BC.       
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As for the -form, the -form may also give a local optimum if the original program is 

non-convex.  When the original program is convex, constraint (8) is not necessary.  

 

Remark 6.1.  To get more accurate result, the piecewise linear approximation of fi can be 

refined with more linear segments.  There are studies on segment refinement to get the best 

trade off between accuracy and computational effort.     

 

Remark 6.2.  It is possible to approximate constraints by similar procedure.    

 

Remark 6.3.  A product term x1x2 can be transformed to separable form.  Let s1 = (x1+x2)/2 

and s2 = (x1-x2)/2.  Then x1x2 = .2
2

2
1 ss      


