2. Convex Sets and Convexity

2.1. Convex Sets

 A set *S* is *convex* if any line segment joining two elements of *S* is a subset of *S*, i.e., for any $\mathbf{x}_1, \mathbf{x}_2 \in S$ and $\alpha \in [0, 1]$, $\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in S$. By definition, the empty set ϕ is convex. There are multiple reasons to define convex sets. One practical reason is to have a connected domain.

Exercise 2.1.1. Let S_i be a convex set for all *i*. Show that $\bigcap_i S_i$ is also a convex set. $\diamond \diamond \diamond$

Exercise 2.1.2. Let $g_1(x_1, x_2, x_3) = 2x_1 - 5x_2 + 3x_3$ and $g_2(x_1, x_2, x_3) = x_1 + 2x_2 + x_3$. Show that the $G = \{x | g_1(x) \le 8 \text{ and } g_2(x) \le 8\}$ is a convex set. *Remark*. By a similar argument, the feasible set of a linear program is a convex set. $\diamond \diamond \diamond$

2.2. Convex Functions and Concave Functions

Many results in non-linear optimization involve convex (and concave) functions. In fact, most of those nice, beautiful results rely on convexity (and concavity).

Definition 2.2.1. A function $f(\mathbf{x})$ is (*strictly*) *convex* over a convex $S \subseteq \mathbb{R}^n$ iff

$$
f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \ll \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)
$$
 for all $\mathbf{x}_1, \mathbf{x}_2 \in S$ and $0 \le \alpha \le 1$. \diamond \diamond

Definition 2.2.1 has a nice graphical representation, i.e., function *f* is a convex function in a convex set *S* if the line segment joining $(\mathbf{x}_1, f(\mathbf{x}_1))$ and $(\mathbf{x}_2, f(\mathbf{x}_2))$ is not less than the functional value of any point $\alpha x_1 + (1-\alpha)x_2$ between x_1 and x_2 .

Definition 2.2.2. A function $f(\mathbf{x})$ is (*strictly*) *concave* over a convex $S \subseteq \mathbb{R}^n$ iff

 $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \geq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2)$ for all $\mathbf{x}_1, \mathbf{x}_2 \in S$ and $0 \leq \alpha \leq 1$. $\Leftrightarrow \Leftrightarrow$

Properties of Convex and Concave Functions

- Let $f(x)$ be a convex (resp. concave) function. Then $-f(x)$ is a concave (resp. convex) function.
- Let $f_i(\mathbf{x})$ be a convex (resp. concave) function and $c_i > 0$. Then $\sum_i c_i f_i(\mathbf{x})$ is a convex (resp. concave) function.
- Let $f_i(\mathbf{x})$ be a convex function and $b_i \in \mathbb{R}$ for $i = 1, ..., m$. The set $S = {\mathbf{x} \in \mathbb{R}^n | f_i(\mathbf{x}) \leq \mathbb{R}^n}$ b_i , $i = 1, \ldots, m$ is a convex set.
- Let $f_i(\mathbf{x})$ be a convex (resp. concave) function. Then $\max_i \{ f_i \}$ (resp. $\min_i \{ f_i \}$ f_i }) is also

a convex (resp. concave) function.

- A convex (resp. concave) function is continuous except possibly at the boundary.
- **Theorem 1** (pp 325 of JB). Let *S* be the solution set defined by a set of linear constraints $\mathbf{a}_i^T \mathbf{x} \le b_i$, $i = 1, ..., m$. If the maximization problem max $\{f(\mathbf{x}) | \mathbf{x} \in S\}$ is feasible for a convex function *f*, then a global maximum exists at a corner point of *S*.

Exercise 2.2.1. Let *S* be defined by $-2 \le x \le 5$, $-2 \le y \le 4$, and $f(x, y) = x^2 + y^2$. Identify the local and global maxima of *f* in *S*.

• Theorem 2 (pp 326 of JB). Let $f(x)$ be a convex function and the solution set *S* be convex. If the minimization problem min ${f(x) | x \in S}$ is feasible, then all local minima are also global minima. The minimum is unique if *f* is a strictly convex function.

Exercise 2.2.2. Give the intuition of Theorem 2. $\diamond \diamond \diamond$

2.3. Definiteness of Square Matrices

In this subsection we divert to discuss the *definiteness* of a square symmetric matrix, because the convexity of function *f* depends on the definiteness of its Hessian.

Let A be an $n \times n$ *symmetric* matrix and **x** an *n*-dimensional vector. A quadratic function is formed by $\mathbf{x}^T \mathbf{A} \mathbf{x}$. Then

positive definite
\nnegative definite positive semi-definite
\npositive semi-definite
\nnegative semi-definite
\n
$$
\leq 0 \text{ for any } x \neq 0.
$$

 $-2-$

GSLM 52800 **Operations Research II** Fall 13/14

A is *indefinite* if it does not belong to the above four types.

Example 2.3.1. Check the definiteness of these matrices: $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 1 & -4 \end{bmatrix},$ $\begin{bmatrix} 1 & -4 \end{bmatrix}$ $\begin{bmatrix} -9 & 6 \\ 6 & -4 \end{bmatrix}$ $\begin{bmatrix} -9 & 6 \\ 6 & -4 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix},$ $\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix}$. $\begin{bmatrix} 1 & 3 \end{bmatrix}$

Proof. (a).
$$
(x \ y) \begin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix} \begin{pmatrix} x \ y \end{pmatrix} = (2x+y, x+2y) \begin{pmatrix} x \ y \end{pmatrix} = 2x^2+xy+xy+2y^2 = x^2+y^2+(x+y)^2 > 0
$$

for $(x, y) \neq (0, 0)$. Therefore, $\begin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}$ is positive definite.

(b). 1 1 $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ *x x y y* $\begin{vmatrix} 1 & 1 \end{vmatrix}$ $\begin{pmatrix} x \end{pmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x+y)^2 \ge 0$ for $(x, y) \ne (0, 0)$. Therefore, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 1 1 $\begin{vmatrix} 1 & 1 \end{vmatrix}$ $\begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ is positive semi-definite.

(c).
$$
(x \ y)
$$
 $\begin{bmatrix} -1 & 1 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (-x+y, x-4y) \begin{bmatrix} x \\ y \end{bmatrix} = -x^2 + xy + xy - 4y^2 = -(x-y)^2 - 3y^2 < 0$ for $(x, y) \neq (0, 0)$.
Therefore, $\begin{bmatrix} -1 & 1 \\ 1 & -4 \end{bmatrix}$ is negative definite.

(d).
$$
(x \quad y)
$$
 $\begin{bmatrix} -9 & 6 \\ 6 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -9x^2 + 12xy - 4y^2 = -(3x - 2y)^2 \le 0$ for $(x, y) \neq (0, 0)$. Therefore,
 $\begin{bmatrix} -9 & 6 \\ 6 & -4 \end{bmatrix}$ is negative semi-definite.

(e). 3 1 $(x \quad y)\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ *x x y y* $\begin{pmatrix} 3 & 1 \end{pmatrix}$ $\begin{pmatrix} x \end{pmatrix}$ $\begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 3x^2 + 2xy = x^2 - y^2 + (x+y)^2$, which can be positive and negative for $(x, y) \neq (0, 0)$. Therefore, 3 1 1 0 $\begin{vmatrix} 3 & 1 \end{vmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ is indefinite.

(f). 2 1 $\begin{vmatrix} x & y \end{vmatrix} \begin{vmatrix} 1 & 3 \end{vmatrix}$ *x x y y* $\begin{bmatrix} -2 & 1 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -2x^2 + 2xy + y^2 = (x+y)^2 - 3x^2$, which can be positive and negative for $(x, y) \neq (0, 0)$. Therefore, 2 1 1 3 $\begin{bmatrix} -2 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ is indefinite. \diamondsuit

*Remark*s. The definiteness of a matrix is also related to the optimization result.

 $-3-$

Minimizing 2 1 $(x y)\begin{bmatrix} 1 & 2 \end{bmatrix}$ *x x y y* $\begin{pmatrix} 2 & 1 \end{pmatrix}$ $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ gives (0, 0) as the unique global minimum; minimizing 1 1 $\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ *x x y y* $\begin{vmatrix} 1 & 1 \end{vmatrix}$ $\begin{pmatrix} x \end{pmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ gives multiple minimum when *x* = -*y*; maximizing 1 1 $\begin{vmatrix} (x & y) \\ 1 & -4 \end{vmatrix}$ *x x y y* $\begin{bmatrix} -1 & 1 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} 1 & -4 \end{bmatrix}$ $\begin{bmatrix} y \end{bmatrix}$ gives (0, 0) as the unique global maximum; maximizing 9 6 $\begin{vmatrix} (x & y) \\ 6 & -4 \end{vmatrix}$ *x x y y* $\begin{bmatrix} -9 & 6 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix}$ $\begin{bmatrix} 6 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ gives multiple maximum for $3x = 2y$; there is neither minimum nor maximum for the two functions 3 1 $(x \quad y) \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ *x x y y* $\begin{pmatrix} 3 & 1 \end{pmatrix}$ (x) $\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ and 2 1 $\begin{vmatrix} x & y \end{vmatrix} \begin{vmatrix} 1 & 3 \end{vmatrix}$ *x x y* $\begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix}$.

 In general, the definiteness of a *symmetric* matrix **A** can be found from the determinants of A^1 :

- **A** is *positive definite* iff the determinants of *all* the *leading principal* sub-matrices^{#2} are positive for $i = 1, \ldots, n$.
- **A** is *negative definite* iff $a_{11} < 0$ and the determinants of remaining leading principal sub-matrices alternate in sign, i.e., the determinant of the second principal sub-matrix > 0, the third $<$ 0, and so on.
- **A** is *positive semi-definite* iff the determinants of *all principal* sub-matrices, *leading or not*, are non-negative.
- **A** is *negative semi-definite* iff the determinants of *all* principal sub-matrices of *odd order*, leading or not, are non-positive, and the determinants of *all* principal sub-matrices of *even order*, leading or not, are non-negative.
- **A** is *indefinite* iff it is none of the above four types.

It is also possible to check the (semi)definiteness of a square symmetric matrix by diagonalizing it. We skip this method.

Example 2.3.2. There are simple formulas to get the determinants For 2×2 and 3×3 matrices.

 $\frac{1}{1}$ ^{#2} The leading principal sub-matrices of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 6 \end{bmatrix}$ $\overline{}$ $\overline{}$ I I L I 2 3 6 1 2 3 4 1 2 are [4], $\begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}$ \mathbf{r} 1 2 $\begin{bmatrix} 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, and $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$. 2 3 6 1 2 3 4 1 2 J. J $\overline{}$ i. I I L $\overline{}$ However, $\overline{}$ $\begin{vmatrix} 1 & 2 & 3 \end{vmatrix}$ J 4 1 2 \mathbf{r} $\begin{bmatrix} 2 & 3 & 6 \end{bmatrix}$ L 1 2 3 does have principal sub-matrices (that are not leading), including [2] and [6] of order 1, $\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$ L 2 6 $\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix}$ and $\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$ \mathbf{r} 3 6 $\begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$ of order 2. Naturally, for an $n \times n$ matrix, it has C_k^n principal sub-matrices of order *k*.

 $-4-$

For
$$
\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
, $det(\mathbf{A}) = ab - cd$, and for $\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, $det(\mathbf{A}) = aei + cdh + bfg - ceg - afh - bdi$.

In the context of Hessians of function f , A may be a function of variables rather than a set of pure numbers.

Example 2.3.3. The following parts are examples from the textbook JB. Check the (semi-)definiteness of the Hessians of the following functions. Note especially that in (d) the Hessian changes with the value of (x_1, x_2) .

(a).
$$
f(\mathbf{x}) = 3x_1x_2 + x_1^2 + 3x_2^2
$$
.
\n(b). $f(\mathbf{x}) = 24x_1x_2 + 9x_1^2 + 16x_2^2$.
\n(c). $f(\mathbf{x}) = x_1x_2 + x_1x_3 + x_2x_3 + \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$.
\n(d). $f(\mathbf{x}) = (x_2 - x_1^2)^2 + (1 - x_1)^2$.

2.4. Differentiable Convex Functions

1

 The Mean Value Theorem and the Taylor's Theorem can be regarded as the linear and the quadratic approximations of a function in a given direction.

Mean Value Theorem. For $f \in C^1$ in the linear segment container [\mathbf{x}_1 , \mathbf{x}_2], there exists an α , $0 \le \alpha \le 1$, such that

$$
f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla^{\mathrm{T}} f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) (\mathbf{x}_2 - \mathbf{x}_1).
$$

Exercise 2.4.1. Let $f(x, y) = x^2 + y^2$.

(a). Find
$$
\alpha
$$
 such that $f\begin{pmatrix} 1 \\ 1 \end{pmatrix} = f\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \nabla^T f\begin{pmatrix} 1-\alpha \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

(b). For the
$$
\alpha
$$
 found in (a), $f\begin{pmatrix} 0.99 \\ 0.99 \end{pmatrix} \approx f\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \nabla^T f\begin{pmatrix} 1-\alpha \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0.99 \\ 0.99 \end{pmatrix}$ and $f\begin{pmatrix} 1.01 \\ 1.01 \end{pmatrix} \approx$

$$
f\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \nabla^T f\begin{pmatrix} 1 - \alpha \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1.01 \\ 1.01 \end{pmatrix}.
$$

Taylor's Theorem. For $f \in C^2$ in the linear segment container $[\mathbf{x}_1, \mathbf{x}_2]$, there exists an α , $0 \leq$ α < 1, such that

$$
f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla^T f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) + \frac{1}{2} (\mathbf{x}_2 - \mathbf{x}_1)^T \mathbf{H}(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) (\mathbf{x}_2 - \mathbf{x}_1).
$$

Definition of a convex function as a function above tangent: Suppose that $f \in C^1$. Then *f* is convex (over convex set) *S* iff $f(y) \ge f(x) + \nabla^{T} f(x)$ ($y - x$) for all x and y.

Proof. First consider a convex *f*. Take $\mathbf{x} = \mathbf{x}_1$ and $\mathbf{y} = \mathbf{x}_2$. From the convexity of *f*, α $\frac{f(x_1 + \alpha(x_2 - x_1)) - f(x_1)}{f(x_2)} \le f(x_2) - f(x_1)$. Passing to the limit as α goes to zero gives $\nabla^T f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) \leq f(\mathbf{x}_2) - f(\mathbf{x}_1)$. Now suppose that $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla^T f(\mathbf{x})(\mathbf{y} - \mathbf{x})$ for all **x** and **y**. Choosing $y = x_1$ and again $y = x_2$ gives two inequalities. Adding the two inequalities gives

$$
\alpha f(\mathbf{x}_1) + (1-\alpha) f(\mathbf{x}_2) \ge f(\mathbf{x}) + \nabla f(\alpha \mathbf{x}_1 + (1-\alpha) \mathbf{x}_2 - \mathbf{x}).
$$

Further choosing $\mathbf{x} = \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2$ completes the proof. \diamondsuit

Definition of a convex function by its Hessian. Suppose that $f \in C^2$. Then *f* is convex (over convex set) *S* iff the Hessian of *f* is positive semi-definite throughout *S*.

Proof. From Taylor's Theorem, for $f \in C^2$,

$$
f(\mathbf{x}_2) = f(\mathbf{x}_1) + \nabla^T f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) + \frac{1}{2}(\mathbf{x}_2 - \mathbf{x}_1)^T \mathbf{H}(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) (\mathbf{x}_2 - \mathbf{x}_1).
$$

H is positive semi-definite is equivalent to $f(\mathbf{x}_2) \ge f(\mathbf{x}_1) + \nabla^T f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1)$.

For a single-variable function $f \in C^2$, *f* is convex iff $\frac{d^2 f(x)}{d^2 x} \ge 0$. For a quadratic form $f(\mathbf{x}) = a + \mathbf{c}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} \in C^2$, its Hessian $\mathbf{H} = \mathbf{Q}$. Thus, *f* is *f* is convex if it is a positive semi-definite function.

There are different types of optimization problems. Please refer to Figure 9.22 **Categorization of Optimization Problems** of JB.