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2. Convex Sets and Convexity  

 

2.1. Convex Sets   

 

 A set S is convex if any line segment joining two elements of S is a subset of S, i.e., for 

any x1, x2  S and   [0, 1], x1+(1-)x2  S.  By definition, the empty set  is convex.  

There are multiple reasons to define convex sets.  One practical reason is to have a 

connected domain.   

 

Exercise 2.1.1.  Let Si be a convex set for all i.  Show that i iS is also a convex set.   

 

Exercise 2.1.2.  Let g1(x1, x2, x3) = 2x1 – 5x2 + 3x3 and g2(x1, x2, x3) = x1 + 2x2 + x3.  Show 

that the G = {x| g1(x)  8 and g2(x)  8} is a convex set.  Remark. By a similar argument, the 

feasible set of a linear program is a convex set.        

 

2.2. Convex Functions and Concave Functions    

 

Many results in non-linear optimization involve convex (and concave) functions.  In 

fact, most of those nice, beautiful results rely on convexity (and concavity).   

 

Definition 2.2.1.  A function f(x) is (strictly) convex over a convex S  n iff  

 

 f(x1+(1-)x2) (<)  f(x1) + (1-)f(x2) for all x1, x2  S and 0    1.    

 

Definition 2.2.1 has a nice graphical representation, i.e., function f is a convex function in a 

convex set S if the line segment joining (x1, f(x1)) and (x2, f(x2)) is not less than the functional 

value of any point x1+(1-)x2 between x1 and x2.  

 

 

 

 

 

 

 

 

 

Definition 2.2.2.  A function f(x) is (strictly) concave over a convex S  n iff  

 

Examples of Convex Functions Examples of Concave Functions 
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   f(x1+(1-)x2) (>)  f(x1) + (1-)f(x2) for all x1, x2  S and 0    1.    

 

Properties of Convex and Concave Functions  

 Let f(x) be a convex (resp. concave) function.  Then f(x) is a concave (resp. convex) 

function.   

 Let fi(x) be a convex (resp. concave) function and ci > 0.  Then ici fi(x) is a convex 

(resp. concave) function.   

 Let fi(x) be a convex function and bi   for i = 1, …, m.  The set S = {x  n| fi(x)  

bi, i = 1, …, m} is a convex set. 

 Let fi(x) be a convex (resp. concave) function.  Then }{max i
i

f  (resp. }{min i
i

f ) is also 

a convex (resp. concave) function.   

 A convex (resp. concave) function is continuous except possibly at the boundary.   

 Theorem 1 (pp 325 of JB). Let S be the solution set defined by a set of linear 

constraints ,T
i iba x  i = 1, …, m.  If the maximization problem max{f(x)| x  S} is 

feasible for a convex function f, then a global maximum exists at a corner point of S.   

 

Exercise 2.2.1.  Let S be defined by -2  x  5, -2  y  4, and f (x, y) = x2+y2.  Identify the 

local and global maxima of f in S.   

 

 Theorem 2 (pp 326 of JB).  Let f(x) be a convex function and the solution set S be 

convex.  If the minimization problem min{f(x)| x  S} is feasible, then all local minima 

are also global minima.  The minimum is unique if f is a strictly convex function. 

 

Exercise 2.2.2.  Give the intuition of Theorem 2.     

 

2.3. Definiteness of Square Matrices   

 

 In this subsection we divert to discuss the definiteness of a square symmetric matrix, 

because the convexity of function f depends on the definiteness of its Hessian.       

 

Let A be an nn symmetric matrix and x an n-dimensional vector.  A quadratic function 

is formed by xTAx.  Then   

A is 

positive definite

negative definite

positive semi-definite

negative semi-definite

 if xTAx 






 0 for any x  0.    
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A is indefinite if it does not belong to the above four types.    

 

Example 2.3.1.  Check the definiteness of these matrices: 
2 1

,
1 2

 
 
 

 
1 1

,
1 1

 
 
 

 
1 1

,
1 4

 
  

 

9 6
,

6 4

 
  

 
3 1

,
1 0

 
 
 

 and 
2 1

.
1 3

 
 
 

           

 

Proof.  (a).  
2 1

( )
1 2

x
x y

y

   
  

   
 = (2x+y, x+2y)

x

y

 
 
 

 = 2x2+xy+xy+2y2 = x2+ y2+(x+y)2 > 0 

for (x, y)  (0, 0).  Therefore, 
2 1

1 2

 
 
 

 is positive definite.         

 

(b).  
1 1

( )
1 1

x
x y

y

   
  

   
 = (x+y)2  0 for (x, y)  (0, 0).  Therefore, 

1 1

1 1

 
 
 

 is positive 

semi-definite.    

 

(c).
1 1

( )
1 4

x
x y

y

   
     

 = (-x+y,x-4y)
x

y

 
 
 

 = -x2+xy+xy-4y2 = -(xy)2-3y2 < 0 for (x, y)  (0, 

0).  Therefore, 
1 1

1 4

 
  

 is negative definite.   

 

(d). 
9 6

( )
6 4

x
x y

y

   
     

 = -9x2+12xy-4y2 = -(3x-2y)2  0 for (x, y)  (0, 0).  Therefore, 

9 6

6 4

 
  

 is negative semi-definite.   

    

(e). 
3 1

( )
1 0

x
x y

y

   
  

   
 = 3x2+2xy = x2 – y2 + (x+y)2, which can be positive and negative for 

(x, y)  (0, 0).  Therefore, 
3 1

1 0

 
 
 

 is indefinite.   

    

(f). 
2 1

( )
1 3

x
x y

y

   
  

   
 = -2x2+2xy+ y2 = (x+y)2 – 3x2, which can be positive and negative 

for (x, y)  (0, 0).  Therefore, 
2 1

1 3

 
 
 

 is indefinite.     

 

Remarks.  The definiteness of a matrix is also related to the optimization result.  
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Minimizing 
2 1

( )
1 2

x
x y

y

   
  

   
 gives (0, 0) as the unique global minimum;  minimizing 

1 1
( )

1 1

x
x y

y

   
  

   
 gives multiple minimum when x = -y; maximizing

1 1
( )

1 4

x
x y

y

   
     

 

gives (0, 0) as the unique global maximum;  maximizing 
9 6

( )
6 4

x
x y

y

   
     

 gives 

multiple maximum for 3x = 2y;  there is neither minimum nor maximum for the two 

functions 
3 1

( )
1 0

x
x y

y

   
  

   
 and 

2 1
( )

1 3

x
x y

y

   
  

   
.    

 

 In general, the definiteness of a symmetric matrix A can be found from the determinants 

of A1: 

 

 A is positive definite iff the determinants of all the leading principal sub-matrices#2 are 

positive for i = 1, …, n. 

 A is negative definite iff a11 < 0 and the determinants of remaining leading principal 

sub-matrices alternate in sign, i.e., the determinant of the second principal sub-matrix > 

0, the third < 0, and so on. 

 A is positive semi-definite iff the determinants of all principal sub-matrices, leading or 

not, are non-negative.  

 A is negative semi-definite iff the determinants of all principal sub-matrices of odd order, 

leading or not, are non-positive, and the determinants of all principal sub-matrices of 

even order, leading or not, are non-negative.     

 A is indefinite iff it is none of the above four types. 

 

It is also possible to check the (semi)definiteness of a square symmetric matrix by 

diagonalizing it.  We skip this method.     

 

Example 2.3.2.  There are simple formulas to get the determinants For 22 and 33 matrices.  

                                                 
1  

#2  The leading principal sub-matrices of 














632

321

214

 are [4], 





21

14
, and .

632

321

214














  However, 















632

321

214

 does have principal sub-matrices (that are not leading), including [2] and [6] of order 1, 







62

24
 and 





63

32
 of order 2.  Naturally, for an nn matrix, it has n

kC  principal sub-matrices of 

order k.      
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For A = ,







dc

ba
 det(A) = abcd, and for A = ,

















ihg

fed

cba

 det(A) = aei + cdh + bfg – 

ceg – afh – bdi.                    

 

 In the context of Hessians of function f, A may be a function of variables rather than a 

set of pure numbers.     

 

Example 2.3.3.  The following parts are examples from the textbook JB.  Check the 

(semi-)definiteness of the Hessians of the following functions.  Note especially that in (d) 

the Hessian changes with the value of (x1, x2).   

(a). f(x) = .33 2
2

2
121 xxxx   

(b). f(x) = .16924 2
2

2
121 xxxx     

(c). f(x) = .2
22

12
12

1
323121 xxxxxxxx   

(d). f(x) =     .1 2
1

22
12 xxx      

 

2.4. Differentiable Convex Functions 

 

 The Mean Value Theorem and the Taylor’s Theorem can be regarded as the linear and 

the quadratic approximations of a function in a given direction.   

 

Mean Value Theorem.  For f  C1 in the linear segment container [x1, x2], there exists an , 

0    1, such that    

 f(x2) = f(x1) + Tf(x1 + (1-)x2) (x2 - x1).    

 

Exercise 2.4.1.  Let f(x, y) = x2 + y2.   

(a). Find  such that 
1

1
f
 
 
 

=
0

0
f
 
 
 

+
1 1

(1 ) .
1 1

T f
    

     
    

    

(b). For the  found in (a), 
0.99

0.99
f
 
 
 

 
0

0
f
 
 
 

+
1 0.99

(1 )
1 0.99

T f
    

     
    

 and 
1.01

1.01
f
 
 
 

 
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0

0
f
 
 
 

+
1 1.01

(1 ) .
1 1.01

T f
    

     
    

      

 

Taylor's Theorem.  For f  C2 in the linear segment container [x1, x2], there exists an , 0  

  1, such that    

 f(x2) = f(x1) + Tf(x1)(x2-x1) + 2
1 (x2- x1)

TH(x1 + (1-)x2) (x2 - x1).      

 

Definition of a convex function as a function above tangent: Suppose that f  C1. Then f is 

convex (over convex set) S iff f(y)  f(x) + Tf(x)( y – x) for all x and y. 

 

Proof.  First consider a convex f.  Take x = x1 and y = x2.  From the convexity of f, 


 )())(( 1121 xxxx ff

  f(x2) – f(x1).  Passing to the limit as  goes to zero gives 

Tf(x1)(x2 – x1)  f(x2) – f(x1).  Now suppose that f(y)  f(x) + Tf(x)( y – x) for all x and y.  

Choosing y = x1 and again y = x2 gives two inequalities.  Adding the two inequalities gives  

 

f(x1) + (1-) f(x2)  f(x) + f (x1+(1-)x2 - x). 

 

Further choosing x = x1+(1-)x2 completes the proof.     

 

Definition of a convex function by its Hessian.  Suppose that f  C2. Then f is convex 

(over convex set) S iff the Hessian of f is positive semi-definite throughout S.    

 

Proof.  From Taylor's Theorem, for f  C2,    

f(x2) = f(x1) + Tf(x1)(x2-x1) + 2
1 (x2- x1)

TH(x1 + (1-)x2) (x2 - x1). 

H is positive semi-definite is equivalent to f(x2)  f(x1) + Tf(x1)(x2-x1).    

 

For a single-variable function f  C2, f is convex iff 
2

2

( ) 0.d f x

d x
   For a quadratic form 

f(x) = a + cTx +
2
1 xTQx  C2, its Hessian H = Q.   Thus, f is f is convex if it is a positive 

semi-definite function.         

 

There are different types of optimization problems.  Please refer to Figure 9.22  

Categorization of Optimization Problems of JB.  


