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2. Convex Sets and Convexity
2.1. Convex Sets

A set S is convex if any line segment joining two elements of S is a subset of S, i.e., for
any xi, X € Sand a € [0, 1], axy+(1-a)x; € S. By definition, the empty set ¢ is convex.
There are multiple reasons to define convex sets. One practical reason is to have a

connected domain.

Exercise 2.1.1. LetS; be a convex set for all i.  Show that ;S; is also a convex set. <<~

Exercise 2.1.2. Let g1(X1, X2, X3) = 2X1 — 5X2 + 3%z and ga(X1, X2, X3) = X1 + 2X2 + X3.  Show
that the G = {X| g1(x) < 8 and gz(x) < 8} is a convex set. Remark. By a similar argument, the
feasible set of a linear program is a convex set. <<

2.2. Convex Functions and Concave Functions

Many results in non-linear optimization involve convex (and concave) functions. In
fact, most of those nice, beautiful results rely on convexity (and concavity).

Definition 2.2.1. A function f(x) is (strictly) convex over a convex S c R" iff
flaxi+H(1-a)x2) (<) < af(xy) + (1-a)f(x2) for all X3, X, e Sand 0 < o < 1. <>
Definition 2.2.1 has a nice graphical representation, i.e., function f is a convex function in a

convex set S if the line segment joining (x1, f(x1)) and (xz, f(x2)) is not less than the functional
value of any point ax;+(1-o)x, between x; and Xj.
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Examples of Convex Functions Examples of Concave Functions

Definition 2.2.2. A function f(x) is (strictly) concave over a convex S < R" iff
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floxa+(1-0)%z) (3) > af(xe) + (1-0)f(x2) for all X1, X, € Sand 0 < o < 1. &<

Properties of Convex and Concave Functions

e Let f(x) be a convex (resp. concave) function. Then —f(x) is a concave (resp. convex)
function.

e Let fi(x) be a convex (resp. concave) function and ¢; > 0. Then Zic; fi(X) is a convex
(resp. concave) function.

e Letfi(x) be a convex functionand b; e R fori=1,...,m. ThesetS={x e R fi(x) <
bi,i=1, ..., m}is aconvex set.

e Letfi(x) be a convex (resp. concave) function. Then max{f;} (resp. min{f;}) is also
! 1

a convex (resp. concave) function.
e  Aconvex (resp. concave) function is continuous except possibly at the boundary.
e Theorem 1 (pp 325 of JB). Let S be the solution set defined by a set of linear

constraints aiszbi, i=1,...,m If the maximization problem max{f(x)| x € S} is

feasible for a convex function f, then a global maximum exists at a corner point of S.

Exercise 2.2.1. LetS be defined by -2 <x <5, -2<y <4, and f (x, y) = x*+y*>. Identify the
local and global maxima of fin S. <<

e Theorem 2 (pp 326 of JB). Let f(x) be a convex function and the solution set S be
convex. If the minimization problem min{f(x)| x € S} is feasible, then all local minima
are also global minima. The minimum is unique if f is a strictly convex function.

Exercise 2.2.2. Give the intuition of Theorem 2. <><-
2.3.  Definiteness of Square Matrices

In this subsection we divert to discuss the definiteness of a square symmetric matrix,
because the convexity of function f depends on the definiteness of its Hessian.

Let A be an nxn symmetric matrix and x an n-dimensional vector. A quadratic function
is formed by x"Ax. Then
positive definite
. negative definite . .
Ais B ... IFXAX
positive semi-definite
negative semi-definite

0 for any x # 0.

NIV AV
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A is indefinite if it does not belong to the above four types.

2 1 11 -1 1
Example 2.3.1. Check the definiteness of these matrices: , , ,
1 2 11 1 4
-9 6 31 -2 1
, , and )
6 -4 10 1 3

2 1

Proof. (a). (X y){1 )

}(Q = (2x+y, x+2y)()>j = Xy +xy+2y° = X2+ yoH(x+y)? > 0

2 1
for (x,y) # (0, 0). Therefore, L 2} is positive definite.

(b). (x y)E ﬂ@j = (x+y)? = 0 for (x, y) # (0, 0). Therefore, E ﬂ is positive

semi-definite.

(c). (x y){_ll }4}@} = (-x+y,x-4y)®j = -XC+xy+Xy-4y? = -(x-y)*-3y* < 0 for (x, y) = (0,

-1 1

0). Therefore,
1 -4

} is negative definite.

-9 6
(d). (x y)[ A 4}@) = -9x%+12xy-4y? = -(3x-2y)? < 0 for (X, y) = (0, 0). Therefore,

-9 6
[6 4} is negative semi-definite.

3

@) (x y){1 .

}@j = 3x%+2xy = x* — y* + (x+y)%, which can be positive and negative for

31
(x,y) #(0,0). Therefore, L 0} is indefinite.

-2 1
. (x y){ . 3}@} = -2x%+2xy+ y* = (x+y)® — 3x%, which can be positive and negative

-2 1
for (x,y) # (0, 0). Therefore, {1 3} is indefinite. <<

Remarks. The definiteness of a matrix is also related to the optimization result.
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2 1
Minimizing (x y){1 2}@} gives (0, 0) as the unique global minimum; minimizing

1 1|(x) . . . . -1 1 |(x
(x y) gives multiple minimum when x = -y; maximizing(x )
1 10y 1 —4)\y

-9 6
gives (0, 0) as the unique global maximum; maximizing (X y){6 4}@) gives

multiple maximum for 3x = 2y; there is neither minimum nor maximum for the two

functions (x y)E ﬂ@j and (x y){_l2 ﬂ@j <<

In general, the definiteness of a symmetric matrix A can be found from the determinants
of A®;

e A s positive definite iff the determinants of all the leading principal sub-matrices™ are
positive fori=1, ..., n.

e A is negative definite iff a;; < 0 and the determinants of remaining leading principal
sub-matrices alternate in sign, i.e., the determinant of the second principal sub-matrix >
0, the third <0, and so on.

e Ais positive semi-definite iff the determinants of all principal sub-matrices, leading or
not, are non-negative.

e Als negative semi-definite iff the determinants of all principal sub-matrices of odd order,
leading or not, are non-positive, and the determinants of all principal sub-matrices of
even order, leading or not, are non-negative.

e Ais indefinite iff it is none of the above four types.

It is also possible to check the (semi)definiteness of a square symmetric matrix by
diagonalizing it. We skip this method.

Example 2.3.2. There are simple formulas to get the determinants For 2x2 and 3x3 matrices.

4 1 2 4 1 2
#  The leading principal sub-matrices of |1 2 3| are [4], [4 1] and |1 2 3 However,

2 36 12 2 36

(4 1 2

1 2 3| does have principal sub-matrices (that are not leading), including [2] and [6] of order 1,

12 3 6

(4 2 2 3 o N .

5 6} and [3 6} of order 2. Naturally, for an nxn matrix, it has C, principal sub-matrices of

o_rder k.
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a b c
b
For A = {: d} det(A) = ab—cd, and for A= |d e f| det(A) = aei + cdh + bfg —
g h i

ceg — afh — bdi. <<

In the context of Hessians of function f, A may be a function of variables rather than a
set of pure numbers.

Example 2.3.3. The following parts are examples from the textbook JB. Check the
(semi-)definiteness of the Hessians of the following functions. Note especially that in (d)
the Hessian changes with the value of (X1, X2).

(@). f(x) = 3xx5 + xlz + 3x§.

(b). f(X) = 24x;x, +9xZ +16X3.

1
2

1

(©). f(X)= XX + XXz + XoX3 + 1 X2 + > X2,

(d). f(x) = (xz—xlz)2+(1—x1)2. <

2.4. Differentiable Convex Functions

The Mean Value Theorem and the Taylor’s Theorem can be regarded as the linear and
the quadratic approximations of a function in a given direction.

Mean Value Theorem. For f € C!in the linear segment container [x1, X-], there exists an a,
0 <a <1, such that

f(Xz) = f(Xl) + VTf(Otxl + (1-0()X2) (X2 - Xl). <<

Exercise 2.4.1. Letf(x,y) = x> + Y2

' el
(@. Findasuchthat f| |=f +V | (l-w) :
1 0 1))1\1

(b).  For the o found in (a), f(o-ggjz f[0j+VTf[(l_a)(1D[0.99j . f(l,Oljz
0.99 0 1) )| 0.99 1.01
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(ofere(a-afi) oo o

Taylor's Theorem. For f € C? in the linear segment container [x1, X2], there exists an o, 0 <
a <1, such that

f(Xz) = f(Xl) + VTf(Xl)(Xz-Xl) +%(X2- Xl)TH(Otxl + (1-(1)X2) (Xz - X1). <> <>

Definition of a convex function as a function above tangent: Suppose that f € C*. Then f is
convex (over convex set) S iff f(y) > f(x) + V'(x)( y — x) for all x and y.

Proof. First consider a convex f. Take X = x; and y = X,. From the convexity of f,
f(xl +0L(X2(;Xl))_ f(xl) < f(XZ) _ f(X]_).

VT(x1) (X2 — X1) < f(x2) — f(x1). Now suppose that f(y) > f(x) + V'f(x)(y — x) for all x and y.

Choosing y = x; and again y = X, gives two inequalities. Adding the two inequalities gives

Passing to the limit as o goes to zero gives

af(x1) + (1-a) f(x2) > f(x) + VI (axg+(1-0)Xz - X).
Further choosing X = ax;+(1-a)x, completes the proof. <<

Definition of a convex function by its Hessian. Suppose that f € C. Then f is convex
(over convex set) S iff the Hessian of f is positive semi-definite throughout S.

Proof. From Taylor's Theorem, for f e C?,
f(Xz) = f(Xl) + VTf(Xl)(Xz-Xl) +% (Xz- Xl)TH(Ot,Xl + (l-OL)Xz) (X2 - Xl).

H is positive semi-definite is equivalent to f(x2) > f(x1) + Vf(X1)(X2-X1). <<

2
For a single-variable function f € C?, f is convex iff %2 0. For a quadratic form

f(x) = a+ ¢x +2x'Qx e C% its Hessian H = Q. Thus, f is f is convex if it is a positive

semi-definite function.

There are different types of optimization problems. Please refer to Figure 9.22
Categorization of Optimization Problems of JB.




