CHEM53200: 表面化學 Lecture 5

Physisorption, Chemisorption & Catalysis

Physical adsorption	Chemical adsorption
(physisorption)	(chemisorption)
no barrier (not activated)	may have barrier
fast	variable uptake kinetics
vdw/dipole interactions	covalent/metallic/ionic
weak (< 0.4 eV)	strong (> 0.4 eV)
always atomic/molecular	may be dissociative
reversible	often irreversible
surface symmetry insensitive	surface symmetry specific
may form multilayers	limited to monolayer
surface $T < \text{condensation } T$	wide range of surface T

eous surface, showing effects due to high energy sites at low coverage, increasing heat of adsorption due to lateral interactions as the monolayer is approached, and a drop at the onset of second layer formation.

CO adsorption on Pd(111)

A precipitous fall in the value of ΔH_{ad} occurs at q = 0.5

原因: associated with the formation of an ordered of surface CO

molecules

Further adsorption decreases separation of CO molecules and disrupts the ordered array \Rightarrow destabilize the adsorbed layer $(:..|\Delta H_{ad}|\downarrow)$

Figure 4.10 The Kisliuk model of precursor-mediated adsorption. Incident molecules trap into intrinsic or extrinsic precursors. Thereafter, sticking becomes a competitive process between desorption out of the precursor and transfer into the stable chemisorbed state. α , probability of entering the precursor state

$$s = \alpha \left(1 + \frac{f_{\text{des}}}{f_{\text{ads}}}\right)^{-1} \left[1 + K \left(\frac{1}{\theta_{\text{req}}} - 1\right)\right]^{-1} \quad \text{where} \quad K = \frac{f'_{\text{des}}}{f_{\text{ads}} + f_{\text{des}}}$$

The initial sticking coefficient is

$$s_0 = \alpha \left(1 + \frac{f_{\rm des}}{f_{\rm ads}}\right)^{-1}$$

$$q_{req}$$
: the coverage dependence of the
sites required for adsorption
 $e.\overline{g_0}$ for u_1 and f_{req} dissociative
adsorption, $q_{req} = (1-\overline{q})^2$

Figure 4.11 The change in sticking coefficient, *s*, with coverage for precursor-mediated adsorption. The change is characterized by the parameter *K*. For K = 0 the sticking coefficient is constant, whereas for K = 1 it drops linearly with coverage as in Langmuirian adsorption. Large values of *K* decrease *s* relative to Langmuirian adsorption

$$\frac{s(\theta)}{s_0} = \left[1 + K\left(\frac{1}{\theta_{\text{req}}} - 1\right)\right]^{-1}$$

Table 1.4 Thermal accommodation coefficients for high energies of the gas molecules $\alpha(\infty)$ [6].

С	12	0.29	0.5	0.18
Si	28	0.15	0.6	0.35
Fe	56	0.08	0.53	0.50
Rh	103	0.04	0.40	0.59
Pt	195	0.02	0.26	0.58

除了以 Lennard-Jones potential energy diagram 定性探討吸附 現象, many properties contribute to the variation in magnitude of the activation barrier in addition to those already mentioned

例如: dissociative adsorption of H₂ on Cu

activated process , S_{o} : low

To achieve adsorption:

 $-\uparrow$ translational energy of H₂(g) [i.e. $T\uparrow$]

- excite H-H vibrationally (stretch H-H bond)

To account fully for the real dynamics of surface adsorption, a multidimensional potential energy surface is required, inclusive of positional, translational, rotation, and vibrational degrees of freedom.

Effect of lateral interactions on the distribution of adsorbates

§ Net attractive lateral interactions

Attractive lateral interactions lead to a distribution of adsorbates in the form of "2D islands", exhibiting "local" coverages considerably higher than the overall coverage averaged over the entire surface.

"edge" atoms 位能較高:

to maximize stability \Rightarrow growth of islands

Material	E(diff) (kJ⋅mol⁻¹)	D ₀ (cm ² ⋅s ⁻¹)
Ni	158.8	300
Pt	110-125	4x10 ⁻³
Rh	173.5	4x10 ⁻²
Re	217.4	1.0
W	284-326	0.85
Cu	171-192	650
Au	146-176	0.37
Мо	217-234	0.8

 TABLE 4.6. Surface Diffusion Coefficient and Activation Energies of Diffusion for

 Selected Adsorbate-Substrate Systems

System	Method and Conditions	$\frac{D_0}{(10^{-4} \times \text{cm}^2/\text{sec})}$	ΔE_D^* (kJ/mole)	Reference
O/W(110)	FEM		¥*1.	
	$\theta < 0.2$	1×10^{-7}	59	1
	$\theta = 0.56$	1×10^{-4}	92	1
CO/W(110)	FEM			
	α phase	Small	Small	2
	β phase	1×10^{-5}	96	2
Xe/W(110)	FEM	7×10^{-8}	4.6	3
H/Ni(100)	LID	2.5×10^{-3}	14.6	4
CO/Ni(100)	LID, $\theta = 0.4$	0.05	20.5	5
0/Pd(100)	LEED		52.3	6
Ni/N-i(110)	Tracer	300	158.8	7

- Adatoms may self-diffuse by exchange with surface.
- Vacancies diffuse by successive atom filling.
- Adatoms may hop multiple *d* spacing in single event.
- ♣ D is higher along natural troughs in surface. FCC(110)

Material	D₀ (cm²·s⁻¹)
Ag / Cu(110)⊥	2.8
Ag / Cu(110)	7.3
CO / Pt(110)⊥	7x10 ⁻⁴
CO / Pt(110)	5x10 ⁻³

 <i>D</i> often hig For FCC s 	gher for close-pa urfaces	icked surfaces	3
	stepped $< (100)$	< (110) < (111)
	increasing diffusi	on coefficient	
	increasing surfac	e 'roughness'	
Vacancies	diffuse by succe	essive atom fill	ing.
	Material	D ₀ (cm ² ⋅s ⁻¹)	
	W / W(211)⊥	4.2x10 ⁻⁹	-
	W / W(211)	7.7x10 ⁻³	
	H / W(211)⊥	1x10 ⁻⁵	
	H / W(211)	2x10 ⁻⁴	
			-

Fig. 1.29 One-dimensional energy profile in the direction of a surface step. Note, the larger activation energy barrier for diffusion from step to terrace sites as compared to diffusion on terraces.

於 step sites \Rightarrow offers more coordination

 \therefore adatom is bound more strongly at a step site

(i.e. higher diffusion activation energy across a surface step)

Figure 3.3 The effect of a step on diffusion energy, E_{dif} [one-dimensional (1D) diffusion]. Note that step-up diffusion is often negligible because of the increased barrier; note also the increased binding strength at the bottom of the step—a feature that is often observed. E_s , Ehrlich–Schwoebel barrier; q_{abs} , depth of the attractive well

Surface Chemical Reactions Surface reactions may be divided into three categories: 1. reactions: materials from the gas phase interacts with the surface to produce new chemical species that include atoms from the surface. · volatilization reactions: product species returns to the gas phase and the surface is progressively consumed. e.g. $H_2O + C \rightarrow CO + H_2$ $Cl_2 + Ni \rightarrow NiCl_2$ $3O_2 + 2Mo \rightarrow 2MoO_3$ • corrosion layer formation: nonvolatile surface compounds is formed. $O_2 + Fe \rightarrow FeO_x$ $S + Ni \rightarrow NiS$ 56

reactions: material from the surface is not directly 3. involved in the species synthesized or decomposed. The surface serves as a site at which the reaction is enhanced relative to its rate in the gas phase. exchange reactions: $(H_2)_{q} + (D_2)_{q} \rightarrow 2(HD)_{q}$ recombination reactions: $H_a + H_a \rightarrow (H_2)_a$ unimolecular decomposition reactions: $(N_2O)_q \rightarrow (N_2)_q + O_a$ $(CHOOH)_{a} \rightarrow CO + CO_{2} + H_{2} + H_{2}O$ bimolecular decomposition reactions: $2(CO)_{q} + (O_{2})_{q} \rightarrow 2(CO_{2})_{q}$ $CO + 2H_2 \rightarrow CH_4 + H_2O$ 58

Catalytic action

Kinetic expressions

- catalytic reaction turnover frequency J: the # of molecules formed per second
- turnover time 1/J: the time necessary to form a product molecule
- specific turnover rate R = J/A: (molecules/cm²/s), A: catalyst surface area
 Since the total # of catalytically active sites could be much smaller than the total # of available surface sites, R defined this way gives a conservative lower limit of the catalytic turnover rate.
- turnover number: *R*·δ*t*, δ*t* is the total reaction time
 The turnover number must be on the order of 10² or larger for the reaction to qualify as catalytic.

While the turnover number provides a figure of merit for the activity of the catalyst sites, the reaction probability RP reveals the overall efficiency of the catalytic process under the reaction conditions.

 $RP = \frac{\text{rate of formation of product molecules}}{\text{rate of incident of reactant molecules}}$

RP can be readily obtained by dividing *R* by the rate of molecular incidence *I*.

Qualitative aspects of heterogeneous catalysis

A sequence of events of a surface-catalyzed process might be:

- (1) gas diffusion to surface (usually fast)
- (2) adsorption of reactants onto surface (slow if activated)
- (3) surface diffusion of reactants to active sites
- (4) reaction of adsorbed species (often rate-determining)
- (5) desorption of products (often slow)
- (6) gas diffusion away from surface

Examples of important heterogeneous catalysis Habor-Bosch process $N_2 + 3H_2 \rightarrow 2NH_3$ (200-300 bar, 670-770 K, catalyst: Fe/K/CaO/Al₂O₃) Fischer-Tropsch synthesis & related chemistry Fischer-Tropsch chemistry proceeds via a complex set of reactions that consume CO and H₂ (synthesis gas or "syn" gas) and produce alkanes, alkenes, alcohols, and other oxygenated compounds, aromatics as well as CO_2 and H_2O . $nCO + (2n + 1)H_2 \rightarrow C_nH_{2n+2} + nH_2O$ $nCO + 2nH_2 \rightarrow C_nH_{2n} + H_2O$ $nCO + 2nH_2 \rightarrow C_nH_{2n+1}OH + (n-1)H_2O$ $2nCO + (n+1)H_2 \rightarrow C_nH_{2n+2} + nCO_2$ $2nCO + nH_2 \rightarrow C_nH_{2n} + nCO_2$ (2n-1)CO + (n-1)H₂ \rightarrow C_nH_{2n+1}OH + (n-1)CO₂ 70

Source: "Surface Science" by K. W. Kolasinski (2002).

Three-way automotive catalyst The threeway automotive catalyst is so named because it removes the three unwanted products CO, HC, and NO_x. $CO + \frac{1}{2}O_2 \rightarrow CO_2$ hydrocarbons $+ O_2 \rightarrow H_2O + CO_2$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ The general composition $NO + CO \rightarrow \frac{1}{2}N_2 + CO_2$ consists of Rh, Pt, and $NO + H_2 \rightarrow \frac{1}{2}N_2 + H_2O$ Pd dispersed on Al₂O₃ hydrocarbons + NO \rightarrow N₂ + H₂O + CO₂ with CeO_2 added as a type of promoter. $NO + \frac{5}{2}H_2 \rightarrow NH_3 + H_2O$ $\rm CO + H_2O \rightarrow CO_2 + H_2$ hydrocarbons + $H_2O \rightarrow CO + CO_2 + H_2$ $3NO + 2NH_3 \rightarrow \frac{5}{2}N_2 + 3H_2O$ $2NO + H_2 \rightarrow N_2O + H_2O$ $2N_2O \rightarrow 2N_2 + O_2$ $2NH_3 \rightarrow N_2 + 3H_2$ 74

Reactions	Catalysts
CO, HC oxidation in car exhaust	Pt, Pd on alumina
NO_x reduction in car exhaust	Rh on alumina, V-oxide
Cracking of crude oil	Zeolites
Hydrotreating of crude oil	Co-Mo, Ni-Mo, W-Mo
Re-forming of crude oil	Pt, Pt-Re, and other bimetallics on alumination
Hydrocracking	Metals on zeolites or alumina
Alkylation	Sulfuric acid, hydrofluoric acid, soild acids
Steam reforming	Ni on support
Water-gas shift reaction	Fe-Cr, CuO, ZnO, alumina
Methanation	Ni on support
Ammonia synthesis	Fe
Ethylene oxidation	Ag on support
Nitric acid from ammonia	Pt, Rh, Pd
Sulfuric acid	V-oxide
Acrylonitrile from propylene	Bi, Mo-oxides
Vinyl chloride from ethylene	Cu-chloride
Hydrogenation of oils	Ni
Polyethylene	Cr, Cr-oxide on silica

Source: "Introduction to Surface Chemistry and Catalysis" by G. A. Somorjai (1994). 76

Structure-Sensitive	Structure-Insensitive
Hydrogenolysis	Ring opening
Ethane: Ni	Cyclopropane: Pt
Methylcylopentane: Pt	
	Hydrogenation
Isomerization	Benzene: Pt
Isobutane: Pt	Ethylene: Pt, Rh
Hexane: Pt	Carbon Monoxide: Ni, Rh, Ru, Mo, F
Cyclization	Dehydrogenation
Hexane: Pt	Cyclohexane: Pt
Heptane: Pt	·
-	Hydrodesulfurization
Ammonia synthesis	Tiophene: Mo
Fe, Re	
Hydrodesulfurization	
Tiophene: Re	
Hydrodesulfurization Tiophene: Re	

Production		Demai	nd
burce	weight	category	weigh
Platinum (US 616 oz^{-1}):			
outh Africa	3920	Jewellery	2940
Russia	1100	Automotive	1800
Recovered	460	Industrial	1460
North America	285	Chemical	315 ^a
Other	105	Petroleum	115 ^a
Palladium (US\$1094 oz ⁻¹):	:		
Russia	5200	Automotive	5160
South Africa	1960	Electronics	2070
North America	665	Dental	870
Recovered	230	Chemical	240 ^a
Other	95		
Rhodium (US $$2125 \text{ oz}^{-1}$):			
South Africa	400	Automotive	502
Russia	80	Chemical	37
Recovered	66	Glass	30
North America	20	Electronics	6
Other	10	Other	11

Г