~ Tests for Constancy of error Variance ~ Besides graphical methods....

1. Modified Levene test (Brown-Forsythe tees) changes monotonically w/ predictor x
Need: $n \gg p$ sit. dependence among cis \rightarrow ignored data $\left(X_{i}, Y_{i}\right), i=1, \cdots, n<$ one group w) low x^{x}

$$
\longrightarrow e_{i} \longleftrightarrow e_{i 1}, \quad i=1, \ldots, n_{1} \quad e_{i 2}, \ldots, n_{2} \quad n_{1}+n_{2}=n .
$$

Let $\tilde{E}_{j}=\operatorname{median}\left\{e_{i j}: i=1, \ldots, n,\right\} \quad j=1,2$
If $(*)$, then $\left|e_{i 1}-e_{i}\right|$ is tend to be smaller/larger than $\left|e_{i s}-e_{2}\right|$'s
Let $\quad d_{i j}=\left|e_{i}-\tilde{e}_{j}\right|, \quad i=1, \ldots n_{j}, j=12$

$$
\begin{aligned}
& \bar{d}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{i} d_{i j}} . \\
& t_{L}^{*}=\frac{\left.\frac{d_{1}-\bar{d}_{2}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} w\right) s^{2}=\frac{\sum\left(d_{1}-\bar{d}_{1}\right)^{2}+\sum\left(d_{i}-d_{2}\right)^{2}}{n-2}}{} .
\end{aligned}
$$

Result: Under $H_{0}=\sigma^{2}\left\{\varepsilon_{i}\right\}=\sigma^{2} \quad \forall i$
If n_{1}, n_{z} are not extremely small then $t_{L}^{*} \sim t_{(n-2)}$
Hence, reject H_{0} at level α

$$
\text { if }\left|t_{2}^{*}\right|>t\left(1-\frac{\alpha}{2} ; n-2\right)
$$

c.f. ex. on p.117-118
2. Breusch-Pagan Test. (p.118)

Applicable to large sample and $\log \sigma_{1}^{2}=\gamma_{0}+\gamma_{1} x_{1}$ ie. $H_{0}: \sigma^{2}\left\{\varepsilon_{i}\right\}=\sigma^{2} \quad \forall i \quad \hat{H}_{=0} H_{0}=\gamma_{1}=0$

Reg. e_{i}^{2} on $x_{i} \Rightarrow$ obtain $S S R^{*}$
Result:

$$
\begin{aligned}
& I t: \\
& x_{B P}^{2}= \frac{\frac{S S R^{*}}{2}}{\left(\frac{S S E}{n}\right)^{2}} \\
& \xrightarrow{n \rightarrow \infty} X_{1}^{2}
\end{aligned}
$$

w) SSE is from ANova by reg.) Yon under $H_{0}: \gamma_{1}=0$
Hence, reject $H_{0}=\sigma^{2}\left\{\varepsilon_{i}\right\}=\sigma^{2} \quad \forall i$
if $X_{\beta p}^{2}>X^{2}(1-\alpha ; 1)$
such test has level $\approx \alpha$.
c.f. P. 119 for example.
~ Goodness - of - fit ~

- F test for lack of fit

One predictor : x

$$
S-L-R \text { model : } Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}, i=1 \cdots n
$$

w) ε_{i} ind $N\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
\Leftrightarrow & E\left(Y \mid X=X_{i}\right)=\beta_{0}+\beta_{1} x_{i} \quad, i=1 \cdots n \\
& Y \mid X=X_{i} \sim N\left(\beta_{0}+\beta X_{i}, \sigma^{2}\right), \\
& Y \mid X \sim N\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)
\end{aligned}
$$

Goodness - of - fit test is to test

$$
H_{0}: E(Y \mid X)=\beta_{0}+\beta_{1} X \quad \text { V.S. } H_{1}: \text { Not } H_{0}
$$

assuming

$$
Y_{i}=Y \mid X=X_{i}, i=1 \ldots, n \text {, indep. }
$$

normal w) common var. σ^{2}.
I.e. test the appropriateness of a linear reg. ft.

$$
\Rightarrow \text { Assume } \underset{\sim}{\sim} \sim N_{n}\left(\underset{\sim}{\theta}, \sigma^{2} \cdot I\right) ; \Omega=\operatorname{span} \text { by }\left\{\frac{1}{\sim}, \underset{\sim}{x}\right\} \text {. }
$$

to test $H_{0}: \theta_{i}=\beta_{0}+\beta_{1} x_{i}, i=1 \cdots n \Leftrightarrow H_{0}: \theta \in \Omega$ vs. $H_{1}:$ NOT Ho

Note: Let $H=$ hat matrix, projection matrion

$$
\hat{Y}=H \underset{\sim}{Y}, \quad \underset{\sim}{e}=\Sigma-\dot{Y}
$$

IF $\underset{\sim}{\sim} \in \Omega$,

$$
E\left(e_{\sim}^{e}\right)=0 \quad \Leftrightarrow \quad E\left(e_{i}\right)=0 \quad \forall i=1 \cdots n
$$

$O W \cdot(Q \notin \Omega)$

$$
H_{0}=\theta \in \Omega \Leftrightarrow H_{0}: B_{l}^{-}=0 . \forall i \text {. }
$$

$$
E\left(\underline{e}_{\sim}\right)=E\left(Y_{\sim}\right)-E(\hat{\mathcal{L}})=\underset{\sim}{\theta}-H \underset{\sim}{\theta} \neq 0
$$ $E \quad E\left(e_{i}\right)=B_{i}, i=1 \cdots n$, not $a l l B_{i}$'s are o

but

$$
\begin{aligned}
\sigma^{2}\left\{e_{i}\right\} & =\left(1-h_{i}\right) \sigma^{2}, i=1 \cdots n \\
\Rightarrow E(S S E) & =E\left(\sum e_{i}^{2}\right)=\sum E\left(e_{i}^{2}\right) \\
& =\sum\left(\sigma^{2}\left\{e_{i}\right\}+\left(E\left(e_{i}\right)\right)^{2}\right) \\
& =\sigma^{2} \sum\left(1-h_{i i}\right)+\sum B_{i}^{2} \\
& =\sigma^{2}\left(n-\sum h_{i i}\right)+\sum B_{i}^{2} \\
& =(n-2) \sigma^{2}+\sum B_{i}^{2} \quad \sum h_{i i}=2 \\
\Rightarrow E(M S E) & =E\left(\frac{S S E}{n-2}\right) \\
& =\sigma^{2}+\frac{1}{n-2} \sum B_{i}^{2} \quad \cdots(41)
\end{aligned}
$$

note: $I-H=$ sym. idempotent w) rank $=n-2$

$$
\begin{aligned}
& S S E=e^{t}{\underset{\sim}{e}}^{e}=\underline{\sim}^{t}(I-H) \underset{\sim}{Y} \\
& \begin{aligned}
\text { The. } 1 & \Rightarrow \frac{S S E}{\sigma^{2}} \sim x_{n-2, \delta}^{2} \sim \delta=\underbrace{*}(I-H) \theta / \sigma^{2} \\
& \Rightarrow E\left(\frac{S S Z}{\sigma^{2}}\right)=n-2+\delta
\end{aligned} \\
& \Rightarrow E(M S E)=\sigma^{2}+\sigma^{2} \cdot \delta /(n-2) \\
& \left(\Delta_{1}\right)=\left(\Delta_{2}\right) \Rightarrow \delta=\frac{1}{\sigma^{2}} \sum_{1}^{n} B i^{2}
\end{aligned}
$$

Hence, under $H_{0}: \underset{\sim}{\theta} \in \Omega$ ie. all $B_{i} ' s=0$

$$
\begin{gathered}
\delta=0 \Rightarrow \frac{\rho S z}{\sigma^{2}} \sim \gamma_{n-2}^{2} \\
\left(\Delta_{1}\right)=\sigma^{2}
\end{gathered}
$$

under $H_{1}: \underset{\sim}{\theta} \notin$ ie. Some B_{i}; $\neq 0$

$$
\delta \neq 0 \quad \frac{s s t}{(\Delta 1)>\sigma^{2}} \sim \gamma_{n-2}^{2}
$$

$$
\delta=\frac{1}{\gamma_{2}} \sum B_{i}^{2}
$$

$E\left(\frac{S S E}{\sigma^{2}}\right)$ larger under H_{1} than under HO.
\Rightarrow (I) If $\cdot \sigma^{2}=$ known
\Rightarrow ref. Ho: $\theta \in \Omega$ if $\frac{\rho s \tau}{\sigma^{2}}>Y_{n-2,1-\alpha}^{2}$ is a level α test.
(V) $\sigma^{2}=$ unknown (typical case.) need an est. for $\sigma^{2} \ldots$.
$(\Delta 1)$: MST is unbiased for r^{2} under H_{0}
But H_{0} is now under testing... need an est. for σ^{2} when

$$
Y_{\sim} \sim N_{n}\left(\theta, \sigma^{2} \cdot I\right) \quad(\underset{\sim}{\theta} \operatorname{may} \operatorname{not} \text { in } \Omega)
$$

\rightarrow require replications ... at some values of the predictor.

Let x_{1}, \ldots, x_{c} be the different values (levels) of the predictor x in the data.
i.e. $\quad \forall i=1 \cdots n . \quad x_{i} \in\left\{x_{1}, \cdots x_{c}\right\}$
let $Y_{i j}=$ the response of the repeated trials, $i=1 \cdots n_{j}$, when

$$
\begin{gathered}
x=x_{j}, j=1 \cdots c . \\
\sum_{j=1}^{c} n_{j}=n . \quad E\left(Y_{i j}\right)=E\left(Y \mid X=x_{j}\right), \quad \forall i=1 \cdots n_{j} \mu_{j} \\
\underset{\sim}{\theta}=E(Y)=\left(\begin{array}{c}
Y_{11} \mid Y_{12} \\
\vdots \\
Y_{n+1} \\
Y_{n 22} \\
\mu_{1} \\
\frac{\mu_{1}}{\vdots} \\
\mu_{c} \\
i n
\end{array}\right)
\end{gathered}
$$

\rightarrow Rewrite model as: $Y_{i j}=\mu_{j}+\varepsilon_{i j}-j=1 \cdots c, i=\cdots n_{j}$ w) Ell ind $N\left(0, \sigma^{2}\right)$

$$
\left.\begin{array}{cl}
\cdot i_{j}=\mu_{j}+\varepsilon_{i j}, & i=1 \cdots n_{j}, j+1 \cdots c \\
& \left(\sum_{j=1}^{c} n_{j}=n\right)
\end{array}\right\}(* *)
$$

$\varepsilon_{i j}$ ied $N\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
\longleftrightarrow\left(\begin{array}{c}
Y_{11} \\
Y_{21} \\
\vdots \\
Y_{n 11} \\
Y_{12} \\
\vdots \\
Y_{n 2} \\
\vdots \\
Y_{n c} c
\end{array}\right) & =\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{2} \\
\vdots \\
\mu_{c}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{21} \\
\vdots \\
\varepsilon_{n, 1} \\
\vdots \\
\vdots \\
\\
\varepsilon_{n_{e}}
\end{array}\right) \\
& =\left[\begin{array}{ccc}
\vdots & 0 & 0 \\
\vdots & & \cdots \\
0 & \vdots & \vdots \\
\vdots & 0 \\
\vdots & & \vdots
\end{array}\right]\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{c}
\end{array}\right)+\underset{n \times c}{\varepsilon} \\
& \stackrel{\varepsilon}{c}
\end{aligned}
$$

(also a multiple linear reg. model) w) special design matrix of rank $=c$

FIe. (*)
Reduced $\Leftrightarrow \underset{\sim}{\sim_{n<1}}=D \cdot \mu_{\sim}^{\mu}+\varepsilon_{n} \quad$ w/ $\quad \varepsilon_{\sim} \sim N_{n}\left(0, \sigma^{2} \cdot I\right)$

$$
\begin{aligned}
& D^{t} \underset{\sim}{Y}=\left(\sum_{i=1}^{n_{1}} Y_{i}, \sum_{i=1}^{n_{2}} Y_{i s}, \cdots, \sum_{i=1}^{n_{c}} Y_{i c}\right)^{t} \\
& \Rightarrow \quad \hat{\sim}=\left(\frac{1}{n_{1}} \sum_{1}^{n_{1}} K_{c_{1}}, \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} Y_{i 2}, \cdots, \frac{1}{n_{c}} \sum_{i=1}^{n_{c}} Y_{i c}\right)^{*} \\
& \text { ide. } \quad \hat{\mu}_{j}, j=1 \cdots, c,=\frac{1}{n j} \sum_{T}^{n_{j}} Y_{j}: \operatorname{sample}_{\text {mean }} \text { at } K=\frac{y}{j}
\end{aligned}
$$

: the pure error sum of squares

$$
\triangleq S S P E \quad \cdots\left(\Delta_{3}\right)
$$

note $(* *)$: $\quad Y_{i j}, i=1 \cdots n_{j}$, lid $N\left(\mu_{j}, \sigma^{2}\right)$ for each given J.

$$
\Rightarrow \frac{1}{\sigma^{2}} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{j}\right)^{2} \sim Y_{n_{j}-1}^{2}
$$

for each $\hat{\jmath}=1 \cdots c$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\sigma^{2}} \sum_{j=1}^{c} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{j}\right)^{2} \\
& \stackrel{d}{=} \sum_{j=1}^{c} X_{n j-1}^{2} \quad \text { indef). sum. } \\
& =X_{\sum n_{j}-c}^{2}=1_{n-c}^{2} \quad(c<n)
\end{aligned}
$$

$$
d f(F)=n-c \text {. }
$$

$$
\begin{aligned}
& \cdot \hat{\mu}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j} \triangleq \bar{Y}_{j} \text { : sample mean } \\
& \text { under }(*+k) \Rightarrow \forall i_{n j}: \hat{M}_{j}=\hat{\mu}_{j}=\overline{Y_{j}}, \hat{j}=1 \cdots c, \quad \text { of } Y_{\text {'s }} \text { at } X=X_{j} \text {. } \\
& H_{0}: \underline{\theta} \in \Omega \text { VaS. } H_{1}: \underline{\theta} \otimes \Omega \\
& \left\{\begin{array}{ll}
\Leftrightarrow & H_{0}: \mu_{j}=\beta_{0}+\beta_{1} x_{j}, j=1 \cdots c
\end{array} \begin{array}{l}
\text { Reduced } \\
\\
\text { vas. }
\end{array} \quad \begin{array}{l}
\text { model } \\
\\
H_{1}: \mu_{j} \neq \beta_{0}+\beta_{1} x_{j}, \text { some } j .
\end{array} \in \text { Full model }\right\} \\
& \Rightarrow \quad \operatorname{SSE}(F)=\sum_{j=1}^{c} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\hat{Y}_{i j}\right)^{2} \\
& =\sum_{j=1}^{c} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{j}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
S S E(R) & =S S E \quad \text { under } \\
& =\sum_{j=1}^{c} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\widehat{Y}_{i j}\right)^{2}
\end{aligned}
$$

t fitted value of Xis
$d f(R) \quad \frac{\operatorname{SSE}(R)}{\sigma^{2}} \stackrel{H_{0}}{\sim} x_{n-2}^{2}$
under（＊）

$$
=n-2 \text { i.e. 价 }=b_{0}+b_{1} x_{j}, \quad j=1 \cdots c, \quad i=1 \cdots n_{j} \text {. }
$$

w）bo，bi ：L．S．Z．of $\beta_{0} . \beta_{1}$ z（nder（K）
note：

$$
\begin{aligned}
b_{1} & =\frac{\sum_{k=1}^{n}\left(x_{k}-\bar{X}\right)\left(Y_{k}-\bar{Y}\right)}{\sum_{k=1}^{n}\left(X_{k}-\bar{x}\right)^{2}} \quad \bar{Y}=\frac{1}{n} \sum \sum Y_{j} \\
& =\frac{\sum_{j=1}^{c} \sum_{i=1}^{n}\left(X_{j}-\bar{x}\right)\left(Y_{j}-\bar{Y}\right)}{\sum_{j=1}^{c} \sum_{i=1}^{n}\left(x_{j}-\bar{x}\right)^{2}} \\
& =\frac{\sum_{j=1}^{c} n_{j}\left(x_{j}-\bar{x}\right)\left(\overline{Y_{j}}-\bar{Y}\right)}{\sum_{j=1}^{c} n_{j}\left(x_{j}-\bar{x}\right)^{2}}
\end{aligned}
$$

：ft of Yij＇s only through 痛＇s．

$$
\begin{aligned}
& b_{0}=\bar{Y}_{i}-b_{1} \bar{x} . \\
& \Rightarrow \quad \hat{Y}_{彡=}=b_{0}+b_{1} x_{j}=\frac{\bar{Y}+\bar{Y}_{j} \prime \prime}{}\left(x_{j}-\bar{x}\right) \\
& \triangleq \hat{Y}_{j} .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{SSE}(R)=\sum \sum\left(Y_{i j}-\hat{M}_{j}\right)^{2} \\
& =\Sigma \Sigma\left(Y_{i j}-\hat{Y}_{j}\right)^{2} \\
& =\sum \sum\left(Y_{i j}-\bar{Y}_{j}+\bar{Y}_{j}-\hat{Y}_{j}\right)^{2} \text { the } \\
& (\Delta 3)=\operatorname{SSE}(F)+\sum \sum\left(\bar{Y}_{j}-\hat{Y}_{j}\right)^{2} \text { a lack of }
\end{aligned}
$$

I.e.
depends on $Y_{i j}$'s only through \bar{Y}_{j} 's:

$$
\begin{gathered}
\left.c \because \bar{Y}=\frac{1}{n} \sum_{j=1}^{n} n_{j} \bar{Y}_{j}\right) \\
\text { SSPE }=\sum \sum\left(Y_{i j}-\bar{Y}_{j}\right)^{2}
\end{gathered}
$$

$$
\begin{array}{r}
\text { depends on Yij }-\bar{T}_{\jmath} \text { is } \because \hat{\jmath}=1 \cdots c . \\
\bar{i}=1 \cdots n_{j} .
\end{array}
$$

But $Y_{i j} \stackrel{i d}{\sim} N\left(\mu_{j}, \sigma^{2}\right), i=1 \cdots n_{j}$.

$$
\begin{aligned}
& \rightarrow \quad Y_{i j}-\bar{Y}_{j}, i=1 \cdots n_{j}, \perp \bar{Y}_{j} \text {. } \\
& \forall J=1 \cdots c \\
& \Rightarrow \text { SSLF } \perp \text { SSPE } \\
& p^{\operatorname{lus}}(\Delta 5) \Rightarrow \text { SSLF } \sim \sigma^{2} \cdot f_{c-2, \delta}^{2} \\
& \Rightarrow E(S S L F)=\sigma^{2}(c-2+\delta) \\
& =\sigma^{2}(c-2)+\underbrace{\sigma^{2} \delta} \\
& \sum B_{i}{ }^{2}=0 \text { underdto } \\
& E(S S P E)=\begin{aligned}
\sigma^{2}(n-c) \quad ~ & \left(\frac{S P D E}{n-c}\right)=\gamma^{2} \\
& \text { what call }
\end{aligned} \\
& \text { what call } E(n-c) \text { always unbiased } \quad(c>2 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& S S E(R)=S S E(F)+S S L F \\
& \Rightarrow \frac{F^{X}}{\frac{S S E(R)}{}-S S E(F)} \frac{d f_{R}-d f_{F}}{d S_{F}} \\
& \text { Fie. } \operatorname{SSE}=\text { SSPE }+ \text { SSLF } \\
& \int(* 1) \int(2) \int(1) \\
& \sigma^{2} \cdot x_{n-2}^{2}=d f\left((R) \sigma^{2} X^{2}=d f(F) \quad \cdots \cdot\left(\Delta S^{2}\right) / \frac{S S E(F)}{d f F}\right. \\
& \begin{array}{l}
\text { under } H_{i}=\frac{\text { SSLF }}{C-2} / \frac{S S R Z}{n-c} \\
\left.-\hat{Y}_{j}\right)^{2}
\end{array} \\
& \text { Note: } \quad \text { SSLF }=\sum_{j=1}^{C} \sum_{i=1}^{n_{j}}\left(\bar{T}_{j}-\hat{Y}_{j}\right)^{2}
\end{aligned}
$$

$M S L F=$ SSLF/R-2 tends to be larger than $\frac{S S P E}{n-C}$ under $H_{1} P+4$ Hence

$$
\frac{S S L F}{C-2} / \frac{S S P Z}{n-c} \triangleq F^{*} \cdot(+\infty)
$$

under Ho

$$
\begin{aligned}
& \frac{f x_{c-2}^{2}(c-2}{y x_{n-c}^{2} / n-c} \\
& \sim F(c-2, n-c)
\end{aligned}
$$

To test $H_{0}: \underset{\sim}{\theta} \in \Omega$ ire. $\in(Y \mid X=x)=\beta_{0}+\beta_{1} x$ vas. Not H
(assuming inde'inormality w) common $\sigma^{2} \ldots$)

$$
\text { vej. Ho: if } \begin{aligned}
F^{*} & =\frac{s S L F}{c-2} / \frac{s s p z}{n c} \\
& >F(1-\alpha:(-2, n-c)
\end{aligned}
$$

such test has levol α.
c-f. P. $123 \sim 124$. read!
C NotE: Hope Not To reject Ho...

$$
\text { i.e. large } p \text {-value } . . . \text {) }
$$

In ANoUA Table

Similarly, for multiple reg. to test $\quad K=p-1$, predictors)

$$
H_{0}=E(Y)=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k} \quad \text { v.s. } H_{1}=\text { Not } H_{0}
$$

Goodness - ot - fit.
C : \# of groups ω distinct sets of levels of the k predictors $(c>p)$
$\bar{Y}_{j}: j$-th. group 's group mean

$$
\begin{aligned}
& \text { SSE }=\sum_{j=1}^{c} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{j}\right)^{2} \\
& S S E=\Sigma \Sigma\left(Y_{i j}-\hat{T}_{i j}\right)^{2}, \quad \hat{i}=\not 2 b=H \underset{\sim}{b} \\
& \Rightarrow \quad \underset{(n-P)}{S S E}=\underset{(N P-A)}{S S D E}+S S L F \\
& \begin{array}{ll}
(n-p) \\
i . e . & S S L F
\end{array} \stackrel{(1 \pi-A)}{=} S S E-\text { SSE } \\
& \text { MoPE }=\text { SSE } / n-c \\
& \text { MiLF }=\text { SeLF } / c-p \\
& F^{*}=\operatorname{MSLF} / \operatorname{MSPE} \stackrel{H_{0}}{\sim} F(c-p, n-c)
\end{aligned}
$$

rej. Ho if $F^{*}>F(1-\alpha ; c-p, n-c)$: level α test.

Such test: f-test for lack of fit.

