Instructor: Yu-Ling Tseng

1. For $n = 1, 2, 3, \ldots$, let X_n be independent r.v.'s such that

$$P(X_n = 1) = p_n, \quad P(X_n = 0) = 1 - p_n.$$

Under what conditions on the p_n 's, as $n \longrightarrow \infty$, does $X_n \stackrel{p}{\longrightarrow} 0$?

- 2. Let X_n , n = 1, 2, ..., be i.i.d. r.v.'s such that $E(X_n) = \mu$, $Var(X_n) = \sigma^2$, both finite. Show that $E(\bar{X} \mu)^2 \longrightarrow 0$, that is $\bar{X} \xrightarrow{q.m.} \mu$, as $n \longrightarrow \infty$.
- 3. For $n = 1, 2, ..., \text{ let } X_n, Y_n \text{ be r.v.'s such that, as } n \longrightarrow \infty, E(X_n Y_n)^2 \longrightarrow 0 \text{ and suppose that } X_n \xrightarrow{q.m.} X \text{ for some r.v. } X. \text{ Then show that } Y_n \xrightarrow{q.m.} X, \text{ as } n \longrightarrow \infty.$
- 4. Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d. U(0,1) r.v.'s, and for each n, set $Y_n = \min\{X_1, \ldots, X_n\}$, $Z_n = \max\{X_1, \ldots, X_n\}$, $U_n = nY_n$, $V_n = n(1 Z_n)$. Show that, as $n \longrightarrow \infty$, one has
 - (a) $Y_n \stackrel{p}{\longrightarrow} 0$;
 - (b) $Z_n \stackrel{p}{\longrightarrow} 1$;
 - (c) $U_n \stackrel{d}{\longrightarrow} U$;
 - (d) $V_n \xrightarrow{d} U$, where $U \sim f(u) = e^{-u}$, u > 0, a (negative) exponential distribution with parameter 1.
- 5. Let $X_1, X_2, \ldots, X_n, \ldots$ be i.i.d. r.v.'s and suppose that the k-th population moment $E(X_1^k) = \theta_k$ is finite for a given positive integer k. For $n = 1, 2, \ldots$, let

$$m_k(X) = \frac{1}{n} \sum_{i=1}^n X_i^k$$

be the k-th sample moment of the X_i 's, show that $m_k(X) \stackrel{p}{\longrightarrow} \theta_k$, as $n \longrightarrow \infty$. Thus, show that for i.i.d. r.v.'s with finite variance, the sample variance converges in probability to the population variance.