Instructor: Yu-Ling Tseng

Final

20190109

* Answer and mark clearly the questions in the provided answer sheets. Write down your name and student's ID on the each answer sheet you used.

- * Note: No points will be given if no arguments are provided for an answer. For your information:

 - $\int \sin u \, du = -\cos u + C$ and $\int \cos u \, du = \sin u + C$ $\int \sec^2 u \, du = \tan u + C$ and $\int \sec u \, \tan u \, du = \sec u + C$ $\sin^2 u + \cos^2 u = 1$ and $\tan^2 u + 1 = \sec^2 u$

1. (10 points) (Multiple choice) Which of the following integrals are improper integrals?

(a)
$$\int_{-2}^{5} x^{-2} dx$$

(a)
$$\int_{-2}^{5} x^{-2} dx$$
 (b) $\int_{0}^{2} \frac{x^{3} + x + 7}{e^{2x}(x - 2)} dx$ (c) $\int_{1}^{e} x \ln x dx$

(c)
$$\int_1^e x \ln x \, dx$$

$$(d) \int_{-\infty}^{5} 2xe^{-x^2} dx$$

(d)
$$\int_{-\infty}^{5} 2xe^{-x^2} dx$$
 (e) $\int_{-1}^{4} \frac{1}{\sqrt{|x|}(x-1)} dx$

- 2. (7 points) Find the maximum and minimum values of the function $f(x,y) = xy^2$ subject to the constraint $x^2 + y^2 = 1$
- 3. (49 points) Find

$$(a) \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx$$

(b)
$$\int_0^1 \frac{e^x - e^{-x}}{e^x + e^{-x}} \, dx$$

$$(c) \int_1^e (\ln x)^3 \, dx$$

(a)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 (b) $\int_{0}^{1} \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$ (c) $\int_{1}^{e} (\ln x)^3 dx$ (d) $\int_{0}^{\pi} (\sin x + \cos x)^2 dx$

$$(e) \int \frac{1}{(x^2 - 4)^2} \, dx$$

$$(f) \int \frac{1}{\sqrt{4x^2 - 4}} \, dx$$

(e)
$$\int \frac{1}{(x^2 - 4)^2} dx$$
 (f) $\int \frac{1}{\sqrt{4x^2 - 4}} dx$ (g) $\int \cos(x) 2^x dx$

4. (14 points) Use integration, the Direct Comparison Test, or the Limit Comparison Test to test the integrals for convergence

$$(a) \int_{1}^{\infty} \frac{(\sin(x))^2}{x^2} dx$$

(a)
$$\int_{1}^{\infty} \frac{(\sin(x))^2}{x^2} dx$$
 (b)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x + \sqrt{x}}} dx$$

5. (7 points) Find f'(x) if $f(x) = \int_{\cos^2(2x)}^{x^4} e^{-t^2} (t + \ln t) dt$

Instructor: Yu-Ling Tseng

20190109

6. The gamma function is defined as the improper integral

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx,$$

Final

which is convergent for any $\alpha > 0$. Giving that $\Gamma(1) = 1$, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, for all $\alpha > 0$, hence $\Gamma(n+1) = n!$ for positive integer n, also that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$,

(a) (7 points) show that

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi},$$

(b) (7 points) find

$$\int_{-\infty}^{\infty} e^{-\left(\frac{x^2+4x}{8}\right)} dx$$