Answer and mark clearly the questions in the provided answer sheets.
Write down your name and student's ID on the each answer sheet you used.

* Note: No points will be given if no arguments are provided for an answer.

Good Luck! $\quad \sim \sim$ Yuling $\ddot{\sim}$

1. (10 points) Find the domain and range of the function

$$
f(x)=\frac{x}{\sqrt{x-9}}
$$

2. (10 points) Determine whether the function $f(x)=x^{4}$ is one-to-one. If it is, find its inverse function.
3. (10 points) Find the inverse function of f, where $f(x)=\sqrt{x^{2}-4}, \quad x \geq 2$.
4. (50 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow-1} \frac{2 x^{2}-x-3}{x+1}, \quad \text { (b) } \lim _{\Delta t \rightarrow 0} \frac{(t+\Delta t)^{2}-4(t+\Delta t)+2-\left(t^{2}-4 t+2\right)}{\Delta t} \\
& \\
& \text { (c) } \lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3},
\end{aligned} \quad \text { (d) } \lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}, \quad \text { (e) } \lim _{x \rightarrow 0^{-}} \frac{x+1}{x}, ~ l
$$

5. (10 points) Discuss the continuity of the function

$$
f(x)=\frac{x-1}{x^{2}-4 x+3}
$$

on the closed interval $[0,4]$. If there are any discontinuities, determine whether they are removable.
6. (10 points) Find the constants a and b such that the function $f(x)$ is continuous on the entire real number line, where

$$
f(x)= \begin{cases}2 & x \leq-1 \\ a x+b & -1<x<3 \\ -2 & x \geq 3\end{cases}
$$

