Department of Physics, National Dong Hwa University DEP. of PHYS.- Electrodynamics, Midterm Exam. - April 16, 2008

- 1. If the vector potential can be described as $A(\vec{r}) = \frac{\mu_o}{4\pi} \int \frac{J(r')}{|\vec{r} \vec{r}'|} dV'$
- a. Calculate the expression of $\nabla(\nabla \cdot A(\vec{r}))$? (10%).
- b. Calculate the expression of $\nabla^2 A(\vec{r})$?(10%).
- 2. A pure dipole $\vec{m} = m_o \hat{z}$ put at the origin, please calculate the vector potential and magnetic field at point P(x, y, z) in left figure. (20%)

- 3. If the vector potential $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$ is a suitable solution for magnetic field of \vec{B} , prove $\nabla \times \vec{A} = \vec{B}$. (10%) \vec{B} is uniform
- 4. Find the magnetic field at point P due to a long straight current wire. (10%) wire $\rightarrow \infty$

- $\underline{5}$. A current I is uniformly distributed over a wire of circular cross section, which radius is a,
- a. Find the volume current density J(10%)
- b. Suppose the current is proportional to ks, find the total current (10%). $I = k \subseteq \hat{S}$
- **<u>6.</u>** If the vector potential is $A(\vec{r}) = \frac{\mu_o}{4\pi} \frac{1}{r^3} \vec{m} \times \vec{r}$
- a. Find the magnetic field B which is determined by calculating $\nabla \times \vec{A} = \vec{B}$ (10%).
- b. If a small magnetic dipole moment is placed into such magnetic field, please write down the potential U (10%).

Note:
$$\nabla \cdot (A \times B) = B \cdot (\nabla \times A) - A \cdot (\nabla \times B);$$
$$\nabla \times (A \times B) = (B \cdot \nabla)A - (A \cdot \nabla)B + A(\nabla \cdot B) - B(\nabla \cdot A)$$