Application of Simultaneous Equation in Finance Research
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A. Introduction

Empirical finance research often employs a singleaéion for estimation and testing.
However, single equation rarely happens in the ecoo or financial theory. Using
OLS method to estimate equation(s) which shouldemitse be treated as a
simultaneous equation system is likely to produiesdrl and inconsistent parameter
estimators. To illustrate, let’s start with a slefKeynesian consumption function
specified as the follow:

Co=a+pBY + (1.1)
Y=G+l, (1.2)
I, =1, (1.3)

Where C, is the consumption expenditure at timeYt, is the national income at
time t, 1, is the investment expenditure at time t, whicagsumed fixed at ,, and
M. is the stochastic disturbance term at time t. Hgoa¢l.1l) is the consumption
function; Equation (1.2) is the equilibrium conditi (national income accounting
identity); and equation (1.3) is the investmentction. Some of the variables in the
model are endogenous, others are exogenous. Fampdx, C, and Y, are
endogenous, meaning they are determined withimtba@el. On the other hand,

is the exogenous variable, which is not determinetie model, hence not correlated
with £ .

A simultaneous equation bias arises when OLS ifiexpfo estimate the consumption
function becausey, is correlated with the disturbance temm which violates the
OLS assumption that independent variables are gothal to the disturbance term. To
see this, through a series of substitutions, weadsain the reduced form equations
from the structural equations (1.1) through (188) a

A (2.1)
1-8 1-8° 1-B

Y, = a + 1 lo + H

1-8 1-8° 1-8

(2.2)



Based upon Equation (2.2), clearly is correlated with the disturbance tepn,
which violates the OLS assumption that independ®aniables and the disturbance
term are uncorrelated. This bias is commonly reférto in the literature as the
simultaneous equation bias. Furthermore, the Otifate of S in equation (1.1) is
not only bias, but also inconsistent, meanifig estimate does not converge to the
true S when the sample size increases to vary large.

B. Two-stage and three-stage least squares method

To resolve the simultaneous equation bias problenfiustrated in Section A, in this
section we discuss two popular simultaneous equagstimation methods.
Different methods are available to handle the etion of a simultaneous equation
model: Indirect least squares, instrumental vagigdnbcedure, two-stage least squares,
three-stage least squares, limited informationlibk®d method, and full information
maximum likelihood method, just to name a few. this section, we will focus on
two methods that popular statistical and/or ecoritomsoftware are readily available.

1. Identification problem

Before getting into the estimation methods, it iscessary to discuss the
“identification problem”. ldentification problenriges when we can not identify the
difference between, say, two functions. Consider demand and supply model of
gold. The structure equations can be written as:

Q =a,ta,Pte (3.1)
Q=h+hP+e (3.2)
Q=Q=Q (3.3)

Equation (3.1) is the demand for gold function, venthe demandQ, is determined
by the price of goldP; Equation (3.2) is the supply of gold, and it isuaction of
gold price; Equation (3.1) is an identity statihg imarket equilibrium. Can we apply
the OLS method to Equations (3.1) and (3.2) to inbparameter estimates? To
answer this question, we first obtain the “redudexdn” equations forP and Q
through substitutions.

p=fo=o, € (4.1)
al_lgl al_ﬁl



— al:Bo _aoﬂl alg_lgle
Q* al_lgl i al_lgl (4.2)

Obviously it is impossible to estimate Equationsl)4and (4.2) using OLS method
because there are four parameters, &,, 5,,andg,) to be estimated, but there are

only two equations. Therefore, we cannot estintliéeparameters in the structure
equations. This is the situation called “undemiifecation”.

To differentiate demand equation from supply equmthow suppose we assume that
demand curve for gold may shift due to the changesconomic uncertainty, which
can be proxied by, say, stock market volatiltywhich is assumed to be exogenous.
Hence Equations (3.1) and (3.2) can be modified as:

Q =a,ta,P+aV+e (5.1)

Q=h+pPre (5.2)

The reduced form becomes

P:ﬂo_ao_ a, V+ £-e

al_lgl al_ﬁl al_ﬁl

=WtV +, (6.1)

Q=8+ Ay + By + 2518

=A+AV +7, (6.2)

BecauseV is assumed exogenous and uncorrelated with rdsiggaand 7z,, OLS

can be applied to the reduced form equations @hil)(6.2), and obtain estimators of
Yo VisAy, and A,.  Examine Equation (6.2), we find that, = 8,+fy,, and

A, =By,. Since y,, 1,4, and A are all obtained from the OLS estimates,

and S, can be solved. Therefore, the supply functiorug@ign (6.2)) is said to be
identified. However, from the demand function, fivel that

a,

-a
Vo= , and y, =

a, - p, a, = p,



Since there are only two equations, we can notilplgsestimate three unknowns,

a,,a;,anda, hence the demand function is not identified. Basgon the

discussions of Equations (3.1) and (3.2), we tmmnkthat in a two-equation model,
if one variable is omitted from one equation, ttieis equation is identified. On the
other hand, there is no omitted variable in Equef®1), hence the demand function
is not identified.

Now let’s further modify Equations (3.1) and (3a2)follow:

Q =a,taP+aV+e (7.2)

Q. =45+h5P+p,Dte (7.2)

All variables are defined as before except now axechadded a new varialiein the
supply equation. LeD be the government deficit of Russia, which is as=d
exogenous to the system. When Russia’s budgetitdééteriorates, the government
increases the gold production for cash. The redldoam of P and Q based upon
Equations (5.1) and (5.2) is

_ﬁO_aO_ az V+ ﬁz D+ E£—e

P=
al_lgl al_lgl al_lgl al_lgl

=y tyN +y,D+m (8.1)
Q=(ay +ayy) +(ay +y )V +ay D+ HEZEE
al_ﬁl
=A+AV +A,D+m, (8.2)

Based upon the OLS estimates of Equations (8.1)(&rd), we can obtain unique
estimates for the structure parametersa,,a,,3,.5,, and B,, hence both the

demand and supply functions are identified. In ttése, we call the situation as
“exactly identified”.

In a scenario when there are multiple solutionstite structure parameters, the
equation is said to be “over-identified”. For exde) in Equations (9.1) and (9.2),
we modify the supply equation by adding anothemexwmus variable, g, representing
lagged quantity of gold produced (i.e., supply ofdgin the last period), which is

predetermined.



Q =a,ta,P+aV+e (9.1)

Q=4 +pP+B,D+Bq+ e (9.2)

The reduced form becomes

P:ﬂo_ao_ a, V4 B D+ JEe +£_e
al_lgl al_ﬁl al_lgl al_lgl 01_131

=), t YNV +y,D+y g+ (10.1)
_ a.c - pe
Q=(a,+ay) +(ay,+y )V+ay Dray +—-
al_ﬂl
=A,+AV +A,D+AQq+T, (10.2)

Based upon Equations (10.1) and (10.2), we fmgr, = A,, hence structure equation
parametera, can be estimated ag,/A,. However, we also findz,), = A,, hence
a,can also take another valug,/A,. Therefore, a, does not have a unique
solution, and we say the model is “over-identified”

The condition we employ in the above discussionsniedel identification is the

so-called “order condition of identification”. Taismarize the order condition of
model identification, a general rule is that thenter of variables excluded from an
equation must be> the number of structural equations.

Although “order condition” is a popular way of madeentification, it provides only
a necessary condition for model identification, astufficient condition. Alternatively,
“rank condition” provides both necessary and sidfit conditions for model
identification. An equation satisfies the rank cidiod if and only if at least one
determinant of rank (M-1) can be constructed frohe tcolumn coefficients
corresponding to the variables that have been dadldrom the equation, where M is
the number of equations in the system. HowevenKi@ndition” is more complicate
than “order condition”, and it is difficult to detaine in a large simultaneous equation
model. The following example based upon Equat{ddsl) through (11.3) provides
some basic ideas about “rank condition”. Note Hqua (11.1) through (11.3) are
similar to Equations (5.1), (5.2), and (3.3) wims rearranged.

! The discussions of the order condition draw hgdviim Ramanathan (1995).



Q-a,—aP-aN=¢

Qs_lgo_ﬁ1P: €

Q-Q=0

In the following table, all structural parameters atripped from the equations and

placed in a matrix.

(11.1)
(11.2)

(11.3)

Variables
Equations Intercept | Qq Q, P Vv
Equ. (11.1) | —a, 1 0 -a, -a,
Equ. (11.2) | -5, 0 1 B 0
Equ. (11.3) | 0 1 -1 0 0

Since variablesQ, andV are excluded from Equation (11.2), the determinaint
remaining parameters in columrn@, andVis

Because this has a rank of 2, which is equal tontimaber of equations subtracts 1,
Equation 2 is identified. On the other hand, aedwinant of rank 2 cannot be
constructed for Equation (11.1) because it has amlg zero coefficient, hence
Equation (11.1) is “under-identified”.

2. Two-stage least squares
Two-stage least squares (2SLS) method is easyply apd can be applied to a model

that is exactly- or over-identified. To illustratet's use Equations (7.1) and (7.2)
for demonstration, and rewrite them as the follows:

2 For more detailed discussions of the rank conujtie econometric books such as Greene (2003),
Judge et al. (1985), Fisher (1966), Blalock (19@8) Fogler and Ganapathy (1982).



Q =a,taP+taV+e (12.1)
Q=h+LP+BD+e (12.2)

Based upon the “order condition”, Equations (1249l (12.2) each has one variable
excluded from the other equation, which is equalht® number of equations minus
one. Hence the model is identified.

Since endogenous variabias correlated with the disturbance term, the fitsige for
the 2SLS calls for the estimation of “predictéd (I5) using a reduced form
containing all exogenous variables. To do this, eem apply the OLS to the
following equation:

P:,70 +,71V+I72D+T (13)

OLS will yield unbiased and consistent estimatioecduse bothv and D are
exogenous, hence not correlated with the distudbéeren 7. With the parameters in
equation (13) estimated, the “predictdcan be calculated as:

P :’70 +’?1V+’?2D-

This P is the instrumental variable to be used in thesdcstage estimation, and is
not corrected with the structure equation distudeaterm. Substitutingf’ into
Equations (12.1) and (12.2), we have

Qq :ao+alﬁ>+azv+£ (14.1)

Q,=f,+B, P+B,D+e (14.2)

Since P is not correlated with the disturbance terms, @iShod can be applied to
Equations (14.1) and (14.2).

3. Three-stage least squares

The 2SLS method is a limited information method.n @e other hand, the
three-stage least squares (3SLS) method is a ffdirmation method. A full
information method takes into account the informatirom the complete system,
hence it is more efficient than the limited infotioa method. Simply put, 3SLS
method incorporates information obtained from theance-covariance matrix of the
system disturbance terms to estimate structurateuparameters. On the otherhand,



2SLS method assumes that ande in Equations (14.1) and (14.2) are independent
and estimates structural equation parameters deparshus it might lose some
information when in fact the disturbance terms ac¢ independent. This section
briefly explains a 3SLS estimation method.

Let the structural equation, in matrix, be:
Y, = Zy, + &, wherei=1, 2, ....m (15)

In Equation (15),Y, is a vector ofn observations on the left-hand side endogenous
variables; Z, is a matrix consisting of the right-hand side egetwus and exogenous

variables, i.e.,Z :[yi : ),(]; and ¢, is a vector of structural equation parameters such

that ¢, =[a:B]'. Let

Yl Zl O [//1 gl
Y = Z= Y= £=
Then,
Y=zp+e (16)

If we multiply both sides of Equation (16) by a mraiX’, where

X' 0
X'=|: S,
0 X'
i.e.,
X'Y=X"Z+ X'¢ a7

Then the variance-covariance matrix of the distadeaterm in Equation (17)X'e
will be



E(X'ee'X)=Q0 X x= : : (18)

The 3SLS structural equation parameters can thestimated as

G={Z Q'O ¥ I X FzpQ7'0 "))XF X (19)

A question arises in the estimation process becdngser's are unknown, hence the
matrix Q" is also unknown. This problem can be resolvedising the residuals
from the structural equations estimated by the 2&Lf&rm the mean sum of residual
squares and use them to estim@€'. Standard econometric software such as SAS
can be easily used to estimate Equation (19). m, B6LS takes three stages to
estimate the structural parameters. The firstesiagto estimate the reduce form
system; the second stage uses 2SLS to estimat® theatrix; and the third stage
completes the estimation using Equation (19). &ifz contains information
pertinent to the correlations between disturbamecens in the structural equations,
3SLS is called a full information methdd.

Since 3SLS is a full information estimation metholde parameters estimated are
asymptotically more efficient than the 2SLS estesat However, this statement is
correct only if the model is correctly specifiedn effect, 3SLS is quite vulnerable to

model misspecifications. This is because model peisification in a single equation

could easily propagate itself into the entire syste

C. Application of simultaneous equation in finance research

In this section, we use an example employing theukaneous equation model to
illustrate how the system can be applied to finalesearch.

Corporate governance literature has long debatedthgh corporate executives’

interest should be aligned with that of the shalddrs. Agency theory argues that
unless there is an incentive to align the managerd’shareholder’s interests, facing
the agency problem, managers are likely to expdoipersonal interest at the expense
of shareholders’. One way to align the interesbimake the executive compensation

% For more detailed discussions, see Ghosh (199dyeJet al. (1985), and Greene (2003).



incentive-based. Chen, Steiner, and Whyte (20Q@lyshe effect of bank executive
incentive compensation on the firm risk-taking. iAgée equation model of the effect
of executive compensation on firm risk-taking wolddk like:

Risk=a,+a,(Comp+a,( LT a,( Capitaka ( I\)I+ia'i( Dgé«

i=5

+ Zn: a,(Dyear) + u (20)

i=m+1

Where Risk is measurements of firm risk; Comp ig tbxecutive incentive
compensation (i.e., option-based compensation);ikTAe total assets in log form;
Capital is the bank’s capital ratio; NI is the niaterest income, in percentage; Dgeo
is a binary variable measuring bank’s geographiemification; and Dyear is a
yearly dummy variable. Chen et al. (2006) argwd @LS estimates of Equation (20)
will produce simultaneity bias because executivenpgensation is endogenous to the
model, and is likely to be correlated with the diibnce ternv. Therefore, Chen et
al. (2006) introduce another equation to measueewke compensation.

Comp= 5, + B Risk+ B,( LT+ B( SPY A( Drajev (21)

Where SP is the underlying stock price and Drata series of dummy variables
measuring annual interest rates. For example, Rate@lefined as the T-bill rate of
1992 if the data is from year 1992; otherwise, leaf O is assigned to Rate92.
Interest rate dummies control for the impact ofiast rates on option value.

Taking Equations (20) and (21) together, we findttapplying OLS to these two

structural equations will not yield unbiased estesabecause the right-hand-side
variables include endogenous variables Comp ané. RiSherefore, Chen et al.

(2006) apply 2SLS to these two equations, and Tabigports some of their results.
Chen et al. first report OLS estimates of the eskiation and find that executive’s
compensation structure does not impact firm riskan  2SLS results reported in

Table 1, however, reveal that once the simultardifyrm risk decision and executive

compensation are taken into account, executive eosgiion does affect firm

risk-taking. The incorrect inference derived fréine OLS estimates is thus due to
simultaneity bias.
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Tablel

Simultaneous Equation M odel Showing the Relation between Total Risk and
Option-Based Compensation Estimated Using Two-Stage L east Squares (2SL S)

Models (1y & OPTION/TOTAL_COMP (2)g & ACCUMULATED_OPTION
Equations G OPTION/TOTAL_COMP G ACCUMULATED_OPTION
Variable Equation 1 Equation 2 Equation 1 qudtion 2
OPTION/TOTAL_COMP 0.00028 - - -
(2.17)*
ACCUMULATED_OPTION - 0.00021 -
(4.86)**
G - 1065.1 - 1877.65
(3.13)*** (5.93)***
LN(TA) -0.00123 2.191 -0.0015 2.5616
(-3.73)**= (3.13)*** (-6.12)**= (3.93)***
CAPITAL_RATIO -0.27 - -0.08 -
(-1.83)** (-6.21)*=*
NON_INT_INCOME% 0.0012 - -0.0025 -
(0.27) (-0.83)
GEO_DUMMY -0.0009 - 0.0006 -
(-0.99) (0.85)
STOCK_PRICE - 0.0758 - 0.157
(2.69)*** (5.99)***
D92 /DRate92 0.0059 -1.842 0.0055 -0.3406
(3.8)*** (-1.88)* (5.54)** (-0.37)
D93 / DRate93 0.0056 -1.054 0.0052 0.6085
(3.15)*** (-0.89) (4.98)*** (0.55)
D94 / DRate94 0.0022 0.7567 0.0024 0.4149
(1.42) (0.88) (2.37)** (0.52)
D95 / DRate95 0.00006 -1.1032 0.0003 .3342
(0.05) (-1.77)* (0.36) (-0.57)
D97 /D Rate97 0.0033 0.404 0.0029 1.0367
(2.66)*** (0.57) (3.11)**= (1.58)
D98 /D Rate98 0.0095 1.592 0.0093 1.0771
(7.68)** (2.3)* (10.15)**= (1.67)*
D99 / DRate99 0.0071 3.501 0.0071 0.981
(5.47)** 4.7y (7.55)** (1.38)
D00 / DRate00 0.0136 1.259 0.0139 1.4515
(10.53)**=* (2.0)** (14.65)**=* (2.47)***
R? 30 % 17 % 45% 19%

gis a measure of total risk; OPTION/TOTAL_COMP i thercentage of total compensation in the formtatks
options; ACCUMULATED_OPTION is the accumulated gptivalue measuring the executive’s wealth; LN(T#\) i
the natural log of total assets; CAPITAL_RATIO iset capital-to-assets ratio; NON_INT_INCOME®% the
percentage of income that is from non-interesteEs)rGEO_DUMMY is a binary variable measuring gepgic diversification;
and Dum92 - Dum00 are dummy variables coded asOifar each year from 1992-2000. 1995 is the exadugkar.

*x k% * indicates significance at the 1 perceri,percent and0 percent levels respectively.
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D. Summary and concluding remark

Rarely a single equation arises in economic theohy.a multi-equation system, OLS fails to
yield unbiased and consistent estimators for tihectiral equations. Therefore, appropriate
estimation methods must be applied to the estimatiostructural equation parameters. This
paper first discusses situations where a simultamequation system may arise. We then explain
why OLS estimation is not appropriate. Section Boduces two most frequently used methods
to estimate structural parameters in a system oétans. Before 2SLS and 3SLS methods are
synthesized, we explain the order condition and&m& condition of model identification. 2SLS
and 3SLS are then introduced, and the differenetwden these two methods are discussed.
Section C gives examples from the literature wtegplications of the simultaneous equation
models in finance are shown. In the finance apgibe, Chen et al. (2006) employ a
two-equation model to examine the relationship leetwexecutives’ incentive compensation and
firm risk-taking. Because both executive compensaand firm risk are endogenous, 2SLS is
more appropriate than OLS method.

When deciding on the appropriate method to estirsttectural equations, one must be cautious
that in the real world the distinction between egelmous and exogenous variables are often not
as clear-cut as one would like to have. Econohgoty, therefore, must play an important role
in the model construction. Furthermore, as expldim Section B, although full information
methods produce more efficient estimation, they ac¢ always better than the limited
information method. This is because, for examplel,.S is vulnerable to model specification
errors. If an equation is mis-specified, the emdl propagate into the entire system of
equations.
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