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Application of Simultaneous Equation in Finance Research 

By Carl R. Chen and Cheng Few Lee 

 

 

A. Introduction 

 

Empirical finance research often employs a single equation for estimation and testing.  

However, single equation rarely happens in the economic or financial theory.  Using 

OLS method to estimate equation(s) which should otherwise be treated as a 

simultaneous equation system is likely to produce biased and inconsistent parameter 

estimators.  To illustrate, let’s start with a simple Keynesian consumption function 

specified as the follow: 

 

t t tC Yα β µ= + +          (1.1) 

t t tY C I= +           (1.2) 

0tI I=            (1.3) 

 

Where tC  is the consumption expenditure at time t, tY  is the national income at 

time t, tI  is the investment expenditure at time t, which is assumed fixed at 0I , and 

tµ is the stochastic disturbance term at time t. Equation (1.1) is the consumption 

function; Equation (1.2) is the equilibrium condition (national income accounting 

identity); and equation (1.3) is the investment function.  Some of the variables in the 

model are endogenous, others are exogenous.  For example, tC  and tY  are 

endogenous, meaning they are determined within the model.  On the other hand, tI  

is the exogenous variable, which is not determined in the model, hence not correlated 

with tµ .   

 

A simultaneous equation bias arises when OLS is applied to estimate the consumption 

function because tY  is correlated with the disturbance termtµ , which violates the 

OLS assumption that independent variables are orthogonal to the disturbance term. To 

see this, through a series of substitutions, we can obtain the reduced form equations 

from the structural equations (1.1) through (1.3) as: 

 

01 1 1
t

tC I
µα β

β β β
= + +

− − −
       (2.1) 

0

1

1 1 1
t

tY I
µα

β β β
= + +

− − −
       (2.2) 
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Based upon Equation (2.2), clearly tY  is correlated with the disturbance term,tµ , 

which violates the OLS assumption that independent variables and the disturbance 

term are uncorrelated.  This bias is commonly referred to in the literature as the 

simultaneous equation bias. Furthermore, the OLS estimate of β  in equation (1.1) is 

not only bias, but also inconsistent, meaning β  estimate does not converge to the 

true β  when the sample size increases to vary large.    

 

B. Two-stage and three-stage least squares method 

 

To resolve the simultaneous equation bias problem as illustrated in Section A, in this 

section we discuss two popular simultaneous equation estimation methods.  

Different methods are available to handle the estimation of a simultaneous equation 

model: Indirect least squares, instrumental variable procedure, two-stage least squares, 

three-stage least squares, limited information likelihood method, and full information 

maximum likelihood method, just to name a few.  In this section, we will focus on 

two methods that popular statistical and/or econometric software are readily available.  

 

1. Identification problem 

 

Before getting into the estimation methods, it is necessary to discuss the 

“identification problem”.  Identification problem arises when we can not identify the 

difference between, say, two functions. Consider the demand and supply model of 

gold.  The structure equations can be written as: 

 

0 1dQ Pα α ε= + +          (3.1) 

0 1sQ P eβ β= + +          (3.2) 

d sQ Q Q= =           (3.3) 

 

Equation (3.1) is the demand for gold function, where the demand dQ  is determined 

by the price of gold, P; Equation (3.2) is the supply of gold, and it is a function of 

gold price; Equation (3.1) is an identity stating the market equilibrium. Can we apply 

the OLS method to Equations (3.1) and (3.2) to obtain parameter estimates?  To 

answer this question, we first obtain the “reduced form” equations for P and Q 

through substitutions.  

 

0 0

1 1 1 1

e
P

β α ε
α β α β

− −= +
− −

          (4.1) 



 3

1 0 0 1 1 1

1 1 1 1

e
Q

α β α β α ε β
α β α β

− −= +
− −

         (4.2) 

 

Obviously it is impossible to estimate Equations (4.1) and (4.2) using OLS method 

because there are four parameters (0 1 0 1, , ,andα α β β ) to be estimated, but there are 

only two equations.  Therefore, we cannot estimate the parameters in the structure 

equations.  This is the situation called “under-identification”.  

  

To differentiate demand equation from supply equation, now suppose we assume that 

demand curve for gold may shift due to the changes in economic uncertainty, which 

can be proxied by, say, stock market volatility, V, which is assumed to be exogenous.  

Hence Equations (3.1) and (3.2) can be modified as: 

 

0 1 2dQ P Vα α α ε= + + +         (5.1) 

0 1sQ P eβ β= + +          (5.2) 

The reduced form becomes 

  

0 0 2

1 1 1 1 1 1

e
P V

β α α ε
α β α β α β

− −= − +
− − −

  

       

  0 1 1Vγ γ π= + +          (6.1) 

 

1 1
0 1 0 1 1

1 1

( )
e

Q V
α ε ββ β γ β γ
α β

−= + + +
−

  

  

  0 1 2Vλ λ π= + +           (6.2) 

 

Because V is assumed exogenous and uncorrelated with residuals 1π  and 2π , OLS 

can be applied to the reduced form equations (6.1) and (6.2), and obtain estimators of 

0 1 0, , ,γ γ λ  and 1λ .  Examine Equation (6.2), we find that 0 0 1 0λ β β γ= + , and  

1 1 1λ β γ= .  Since 0 1 0, , ,γ γ λ  and 1λ  are all obtained from the OLS estimates, 0β  

and 1β  can be solved.  Therefore, the supply function (Equation (6.2)) is said to be 

identified.  However, from the demand function, we find that 

 

0 0
0

1 1

β αγ
α β

−=
−

,   and 2
1

1 1

αγ
α β

=
−

. 
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Since there are only two equations, we can not possibly estimate three unknowns, 

0 1 2,, ,andα α α  hence the demand function is not identified.  Based upon the 

discussions of Equations (3.1) and (3.2), we thus know that in a two-equation model, 

if one variable is omitted from one equation, then this equation is identified.  On the 

other hand, there is no omitted variable in Equation (3.1), hence the demand function 

is not identified.   

Now let’s further modify Equations (3.1) and (3.2) as follow: 

 

0 1 2dQ P Vα α α ε= + + +         (7.1) 

0 1 2sQ P D eβ β β= + + +         (7.2) 

All variables are defined as before except now we have added a new variable D in the 

supply equation. Let D be the government deficit of Russia, which is assumed 

exogenous to the system.  When Russia’s budget deficit deteriorates, the government 

increases the gold production for cash.  The reduced form of P and Q based upon 

Equations (5.1) and (5.2) is 

 

0 0 2 2

1 1 1 1 1 1 1 1

e
P V D

β α α β ε
α β α β α β α β

− −= − + +
− − − −

 

  

   0 1 2 1V Dγ γ γ π= + + +         (8.1) 

 

1 1
0 1 0 1 1 2 1 2

1 1

( ) ( )
e

Q V D
α ε βα α γ α γ γ α γ
α β

−= + + + + +
−

 

  0 1 2 2V Dλ λ λ π= + + +         (8.2) 

 

Based upon the OLS estimates of Equations (8.1) and (8.2), we can obtain unique 

estimates for the structure parameters 0 1 2 0 1, , , , ,α α α β β  and 2β , hence both the 

demand and supply functions are identified. In this case, we call the situation as 

“exactly identified”.  

  

In a scenario when there are multiple solutions to the structure parameters, the 

equation is said to be “over-identified”.  For example, in Equations (9.1) and (9.2), 

we modify the supply equation by adding another exogenous variable, q, representing 

lagged quantity of gold produced (i.e., supply of gold in the last period), which is 

predetermined.       
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0 1 2dQ P Vα α α ε= + + +         (9.1) 

0 1 2 3sQ P D q eβ β β β= + + + +       (9.2) 

The reduced form becomes 

 

0 0 32 2

1 1 1 1 1 1 1 1 1 1

q e
P V D

β α βα β ε
α β α β α β α β α β

− −= − + + +
− − − − −

  

 

  0 1 2 3 1V D qγ γ γ γ π= + + + +        (10.1) 

 

1 1
0 1 0 1 1 2 1 2 1 3

1 1

( ) ( )
e

Q V D
α ε βα α γ α γ γ α γ α γ
α β

−= + + + + + +
−

 

 

   0 1 2 3 2V D qλ λ λ λ π= + + + +       (10.2) 

   

Based upon Equations (10.1) and (10.2), we find 1 2 2α γ λ= , hence structure equation 

parameter 1α  can be estimated as 2 2γ λ .  However, we also find 1 3 3α γ λ= , hence 

1α can also take another value, 3 3γ λ . Therefore, 1α  does not have a unique 

solution, and we say the model is “over-identified”.   

 

The condition we employ in the above discussions for model identification is the 

so-called “order condition of identification”. To summarize the order condition of 

model identification, a general rule is that the number of variables excluded from an 

equation must be ≥  the number of structural equations.1  

 

Although “order condition” is a popular way of model identification, it provides only 

a necessary condition for model identification, not a sufficient condition. Alternatively, 

“rank condition” provides both necessary and sufficient conditions for model 

identification. An equation satisfies the rank condition if and only if at least one 

determinant of rank (M-1) can be constructed from the column coefficients 

corresponding to the variables that have been excluded from the equation, where M is 

the number of equations in the system. However, “rank condition” is more complicate 

than “order condition”, and it is difficult to determine in a large simultaneous equation 

model.  The following example based upon Equations (11.1) through (11.3) provides 

some basic ideas about “rank condition”.  Note Equations (11.1) through (11.3) are 

similar to Equations (5.1), (5.2), and (3.3) with terms rearranged. 
                                                
1 The discussions of the order condition draw heavily from Ramanathan (1995). 
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0 1 2dQ P Vα α α ε− − − =         (11.1) 

0 1sQ P eβ β− − =          (11.2) 

0d sQ Q− =           (11.3) 

 

In the following table, all structural parameters are stripped from the equations and 

placed in a matrix.   

 

 Variables 

Equations Intercept dQ  sQ  P V 

Equ. (11.1) 0α−  1 0 1α−  2α−  

Equ. (11.2) 0β−  0 1 1β  0 

Equ. (11.3) 0 1 -1 0 0 

 

Since variables dQ  and V are excluded from Equation (11.2), the determinant of 

remaining parameters in columns dQ  and V is 

 

2
2

1

1 0

α
α

−
=  

 

Because this has a rank of 2, which is equal to the number of equations subtracts 1, 

Equation 2 is identified.  On the other hand, a determinant of rank 2 cannot be 

constructed for Equation (11.1) because it has only one zero coefficient, hence 

Equation (11.1) is “under-identified”.2    

   

2.  Two-stage least squares 

 

Two-stage least squares (2SLS) method is easy to apply and can be applied to a model 

that is exactly- or over-identified.  To illustrate, let’s use Equations (7.1) and (7.2) 

for demonstration, and rewrite them as the follows: 

 

 

                                                
2 For more detailed discussions of the rank condition, see econometric books such as Greene (2003), 

Judge et al. (1985), Fisher (1966), Blalock (1969), and Fogler and Ganapathy (1982). 
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0 1 2dQ P Vα α α ε= + + +         (12.1) 

0 1 2sQ P D eβ β β= + + +         (12.2) 

Based upon the “order condition”, Equations (12.1) and (12.2) each has one variable 

excluded from the other equation, which is equal to the number of equations minus 

one.  Hence the model is identified.   

 

Since endogenous variable P is correlated with the disturbance term, the first stage for 

the 2SLS calls for the estimation of “predicted P” ( P̂ ) using a reduced form 
containing all exogenous variables.  To do this, we can apply the OLS to the 

following equation: 

 

0 1 2P V Dη η η τ= + + +         (13) 

 

OLS will yield unbiased and consistent estimation because both V and D are 

exogenous, hence not correlated with the disturbance term τ . With the parameters in 

equation (13) estimated, the “predicted P” can be calculated as:  

0 1 2
ˆ ˆ ˆ ˆ .P V Dη η η= + +  

This P̂  is the instrumental variable to be used in the second stage estimation, and is 

not corrected with the structure equation disturbance term. Substituting ̂P  into 
Equations (12.1) and (12.2), we have  

 

0 1 2
ˆ

dQ P Vα α α ε= + + +         (14.1) 

0 1 2
ˆ

sQ P D eβ β β= + + +         (14.2) 

Since P̂  is not correlated with the disturbance terms, OLS method can be applied to 
Equations (14.1) and (14.2).   

 

3. Three-stage least squares 

 

The 2SLS method is a limited information method.  On the other hand, the 

three-stage least squares (3SLS) method is a full information method.  A full 

information method takes into account the information from the complete system, 

hence it is more efficient than the limited information method. Simply put, 3SLS 

method incorporates information obtained from the variance-covariance matrix of the 

system disturbance terms to estimate structural equation parameters. On the otherhand, 
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2SLS method assumes that ε  and e in Equations (14.1) and (14.2) are independent 

and estimates structural equation parameters separately, thus it might lose some 

information when in fact the disturbance terms are not independent. This section 

briefly explains a 3SLS estimation method. 

 

Let the structural equation, in matrix, be: 

 

i i i iY Zψ ε= + , where i=1, 2, ….m      (15) 

 

In Equation (15), iY  is a vector of n observations on the left-hand side endogenous 

variables; iZ  is a matrix consisting of the right-hand side endogenous and exogenous 

variables, i.e., [ ]i i iZ y x= ⋮ ; and iψ is a vector of structural equation parameters such 

that [ ] 'i i iψ α β= ⋮ . Let 

1

m

Y

Y

Y

 
 =  
 
 

⋮      
1 0

0 m

Z

Z

Z

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

    
1

m

ψ
ψ

ψ

 
 =  
 
 

⋮       
1

m

ε
ε

ε

 
 =  
 
 

⋮  

Then, 

 

Y Zψ ε= +           (16)  

 

If we multiply both sides of Equation (16) by a matrix X’, where  

 

' 0

'

0 '

x

X

x

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

, 

i.e.,  

 

' ' 'X Y X Z X ε= +          (17) 

 

Then the variance-covariance matrix of the disturbance term in Equation (17), 'X ε  

will be 
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11 1

1

' '

( ' ' ) '

' '

m

m mm

x x x x

E X X x x

x x x x

σ σ
εε

σ σ

 
 = Ω ⊗ =  
 
 

…

⋮ ⋱ ⋮

⋯

   (18) 

 

The 3SLS structural equation parameters can thus be estimated as 

 

1 1 1 1 1ˆ ˆˆ { ' [ ( ' ) ] ' } ' [ ( ' ) ] 'Z X x x X Z Z x x x X Yψ − − − − −= Ω ⊗ Ω ⊗  (19) 

A question arises in the estimation process because the 'sσ  are unknown, hence the 

matrix 1−Ω  is also unknown.  This problem can be resolved by using the residuals 

from the structural equations estimated by the 2SLS to form the mean sum of residual 

squares and use them to estimate 1−Ω .  Standard econometric software such as SAS 

can be easily used to estimate Equation (19). In sum, 3SLS takes three stages to 

estimate the structural parameters.  The first stage is to estimate the reduce form 

system; the second stage uses 2SLS to estimate the Ω̂  matrix; and the third stage 
completes the estimation using Equation (19).  Since Ω  contains information 

pertinent to the correlations between disturbance terms in the structural equations, 

3SLS is called a full information method.3 

 

Since 3SLS is a full information estimation method, the parameters estimated are 

asymptotically more efficient than the 2SLS estimates.  However, this statement is 

correct only if the model is correctly specified.  In effect, 3SLS is quite vulnerable to 

model misspecifications. This is because model misspecification in a single equation 

could easily propagate itself into the entire system.      

  

 

C. Application of simultaneous equation in finance research 

 

In this section, we use an example employing the simultaneous equation model to 

illustrate how the system can be applied to finance research.  

 

Corporate governance literature has long debated whether corporate executives’ 

interest should be aligned with that of the shareholders. Agency theory argues that 

unless there is an incentive to align the managers’ and shareholder’s interests, facing 

the agency problem, managers are likely to exploit for personal interest at the expense 

of shareholders’. One way to align the interest is to make the executive compensation 
                                                
3 For more detailed discussions, see Ghosh (1991), Judge et al. (1985), and Greene (2003). 
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incentive-based.  Chen, Steiner, and Whyte (2006) study the effect of bank executive 

incentive compensation on the firm risk-taking. A single equation model of the effect 

of executive compensation on firm risk-taking would look like: 

 

0 1 2 3 4
5

( ) ( ) ( ) ( ) ( )
m

i
i

Risk Comp LTA Capital NI Dgeoα α α α α α
=

= + + + + +∑  

    
1

( )
n

i
i m

Dyearα µ
= +

+ +∑            (20) 

 

Where Risk is measurements of firm risk; Comp is the executive incentive 

compensation (i.e., option-based compensation); LTA is the total assets in log form;  

Capital is the bank’s capital ratio; NI is the non-interest income, in percentage; Dgeo 

is a binary variable measuring bank’s geographic diversification; and Dyear is a 

yearly dummy variable.  Chen et al. (2006) argue that OLS estimates of Equation (20) 

will produce simultaneity bias because executive compensation is endogenous to the 

model, and is likely to be correlated with the disturbance termµ .  Therefore, Chen et 

al. (2006) introduce another equation to measure executive compensation. 

0 1 2 3
4

( ) ( ) ( ) ( )
m

i
i

Comp Risk LTA SP Drateβ β β β β υ
=

= + + + + +∑     (21) 

Where SP is the underlying stock price and Drate is a series of dummy variables 

measuring annual interest rates. For example, Rate92 is defined as the T-bill rate of 

1992 if the data is from year 1992; otherwise, a value of 0 is assigned to Rate92. 

Interest rate dummies control for the impact of interest rates on option value.   

 

Taking Equations (20) and (21) together, we find that applying OLS to these two 

structural equations will not yield unbiased estimates because the right-hand-side 

variables include endogenous variables Comp and Risk.  Therefore, Chen et al. 

(2006) apply 2SLS to these two equations, and Table 1 reports some of their results. 

Chen et al. first report OLS estimates of the risk equation and find that executive’s 

compensation structure does not impact firm risk-taking.  2SLS results reported in 

Table 1, however, reveal that once the simultaneity of firm risk decision and executive 

compensation are taken into account, executive compensation does affect firm 

risk-taking.  The incorrect inference derived from the OLS estimates is thus due to 

simultaneity bias.   
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Table 1 
Simultaneous Equation Model Showing the Relation between Total Risk and 
Option-Based Compensation Estimated Using Two-Stage Least Squares (2SLS)  
________________________________________________________________________________________________________ 
Models             (1) σj & OPTION/TOTAL_COMP         (2) σj & ACCUMULATED_OPTION 
 
Equations     σj OPTION/TOTAL_COMP   σj  ACCUMULATED_OPTION 

________________________________________________________________________________________________________ 
Variable     Equation 1  Equation 2   Equation 1  Equation 2 
 
OPTION/TOTAL_COMP   0.00028  -    -   - 
      (2.17)** 
ACCUMULATED_OPTION     -    0.00021  - 
             (4.86)*** 
σj      -   1065.1     -   1877.65 
         (3.13)***      (5.93)*** 
LN(TA)     -0.00123  2.191    -0.0015  2.5616 
      (-3.73)***   (3.13)***   (-6.12)***  (3.93)*** 
CAPITAL_RATIO    -0.27   -    -0.08   - 
      (-1.83)**               (-6.21)** 
NON_INT_INCOME%   0.0012  -    -0.0025  - 
      (0.27)       (-0.83) 
GEO_DUMMY    -0.0009  -    0.0006  - 
      (-0.99)      (0.85) 
STOCK_PRICE    -   0.0758   -   0.157 
         (2.69)***      (5.99)*** 
 
D92 /DRate92    0.0059  -1.842    0.0055  -0.3406 
      (3.8)***  (-1.88)*   (5.54)***  (-0.37) 
D93 / DRate93    0.0056  -1.054    0.0052  0.6085 
      (3.15)***  (-0.89)   (4.98)***  (0.55) 
D94 / DRate94    0.0022  0.7567   0.0024  0.4149 
      (1.42)   (0.88)    (2.37)***  (0.52) 
D95 / DRate95    0.00006  -1.1032   0.0003       -0.3342 
      (0.05)   (-1.77)*   (0.36)   (-0.57) 
D97 /D Rate97    0.0033  0.404    0.0029  1.0367 
      (2.66)***  (0.57)    (3.11)***  (1.58) 
D98 /D Rate98    0.0095  1.592    0.0093  1.0771 
      (7.68)***   (2.3)*    (10.15)***  (1.67)* 
D99 / DRate99    0.0071  3.591    0.0071  0.981 
      (5.47)***  (4.7)***   (7.55)***  (1.38) 
D00 / DRate00    0.0136  1.259    0.0139  1.4515 
      (10.53)***  (2.0)**   (14.65)***  (2.47)*** 
 
R2      30 %   17 %    45%   19% 
_____________________________________________________________________________________________ 
σj is a measure of total risk; OPTION/TOTAL_COMP is the percentage of total compensation in the form of stock 
options; ACCUMULATED_OPTION is the accumulated option value measuring the executive’s wealth; LN(TA) is 
the natural log of total assets; CAPITAL_RATIO is the capital-to-assets ratio; NON_INT_INCOME% is the 
percentage of income that is from non-interest sources; GEO_DUMMY is a binary variable measuring geographic diversification; 
and Dum92 - Dum00 are dummy variables coded as 1 or 0 for each year from 1992-2000. 1995 is the excluded year. 
 
***, **, * indicates significance at the 1 percent, 5 percent and 10 percent levels respectively. 
________________________________________________________________________________________________________ 
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D. Summary and concluding remark 

 

Rarely a single equation arises in economic theory.  In a multi-equation system, OLS fails to 

yield unbiased and consistent estimators for the structural equations.  Therefore, appropriate 

estimation methods must be applied to the estimation of structural equation parameters. This 

paper first discusses situations where a simultaneous equation system may arise. We then explain 

why OLS estimation is not appropriate. Section B introduces two most frequently used methods 

to estimate structural parameters in a system of equations. Before 2SLS and 3SLS methods are   

synthesized, we explain the order condition and the rank condition of model identification. 2SLS 

and 3SLS are then introduced, and the differences between these two methods are discussed.  

Section C gives examples from the literature where applications of the simultaneous equation 

models in finance are shown.  In the finance application, Chen et al. (2006) employ a 

two-equation model to examine the relationship between executives’ incentive compensation and 

firm risk-taking.  Because both executive compensation and firm risk are endogenous, 2SLS is 

more appropriate than OLS method.   

 

When deciding on the appropriate method to estimate structural equations, one must be cautious 

that in the real world the distinction between endogenous and exogenous variables are often not 

as clear-cut as one would like to have.  Economic theory, therefore, must play an important role 

in the model construction.  Furthermore, as explained in Section B, although full information 

methods produce more efficient estimation, they are not always better than the limited 

information method. This is because, for example, 3SLS is vulnerable to model specification 

errors.  If an equation is mis-specified, the error will propagate into the entire system of 

equations.     
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