3!:0 y |
Type. internal type of 名詞 y ,encoded
as follows:
1 | 布林 |
2 | literal |
4 | 整數 |
8 | floating point |
16 | complex |
32 | boxed |
64 | extended 整數 |
128 | rational |
|
|
1024 | 稀疏布林 |
2048 | 稀疏 literal |
4096 | 稀疏 整數 |
8192 | 稀疏 floating point |
16384 | 稀疏 complex |
32768 | 稀疏 boxed |
65536 | 符號 |
131072 | unicode |
|
|
|
[x] 3!:1 y |
Convert to Binary Representation.
In standard byte order, bytes of a word are listed
from most significant to least significant; in reverse byte order,
bytes are listed from least significant to most significant.
例如, 4-byte 整數 265358979 is 0fd10e83 in
standard byte-order and 830ed10f in reverse byte-order.
PC is a reverse byte order machine.
雙邊 x 3!:1 y 應用於an陣列 y and produces its
binary representation, 依據原子 x :
| x | word size | byte order |
| 00 | 32 bits | standard |
| 01 | 32 bits | reverse |
| 10 | 64 bits | standard |
| 11 | 64 bits | reverse |
單邊 3!:1 produces binary representation
在word size與byte order of 當前machine.
|
|
3!:2 y |
Convert from Binary/Hex Representation. Inverse of 3!:1
and of 3!:3 ;works on an引數in eir word size
and in eir byte order.
|
|
[x] 3!:3 y |
Hex Representation. Like 3!:1 ,but
result is a literal 矩陣of hexadecimal representation.
例如, under 視窗:
(3!:3 x); 3!:3 x,1p1 [ x=: 1 2 3 0 _1
+--------+--------+
|04000000|08000000|
|00000000|00000000|
|05000000|06000000|
|01000000|01000000|
|05000000|06000000|
|01000000|00000000|
|02000000|0000f03f|
|03000000|00000000|
|00000000|00000040|
|ffffffff|00000000|
| |00000840|
| |00000000|
| |00000000|
| |00000000|
| |0000f0bf|
| |182d4454|
| |fb210940|
+--------+--------+
|
3!:4 y 3!:5 y |
整數/Floating Conversion. If ic=: 3!:4
and fc=: 3!:5 ,n
2 ic y | J 整數s to binary long 整數s |
_2 ic y | binary long 整數s to J 整數s |
1 ic y | J 整數s to binary short 整數s |
_1 ic y | binary short 整數s to J 整數s |
0 ic y | binary unsigned short 整數s to J 整數s |
2 fc y | J floats to binary doubles |
_2 fc y | binary doubles to J floats |
1 fc y | J floats to binary short floats |
_1 fc y | binary short floats to J floats |
All ranks are infinite與all inverses of k&ic
and k&fc exist.
|