

Torsion pendulum

實驗目的

▶ 觀察扭擺的簡諧振盪、阻尼振盪

◆將圓盤從靜止位置扭轉 一小角度,然後釋放, 它將會對此靜止位置作 角簡諧振盪運動。

◆若在實驗系統中加入磁 鐵,則會構成阻尼振盪 系統,扭轉它後,則它 會作角阻尼振盪運動。

實驗原理

實驗原理

彈簧 扭擺 $m\frac{d^{2}x}{dt^{2}} = -kx \quad \Leftrightarrow \omega^{2} = \frac{k}{m} \quad I\frac{d^{2}\theta}{dt^{2}} = -\kappa\theta \quad \Leftrightarrow \omega^{2} = \frac{\kappa}{I}$ $\Rightarrow \frac{d^2x}{dt^2} = -\omega^2 x$ $\Rightarrow \frac{d^2\theta}{dt^2} = -\omega^2\theta$ 簡諧運動振盪週期 角簡諧運動振盪週期 $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{\kappa}}$ $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$

實驗原理

彈簧	扭擺
◆ 在 無 其 他 外 力 的 狀 況	◆ 在無其他外力的狀況
下,	下,
満足力 學 能 守 恆 !	滿足力學能守恆!
$\frac{1}{2}kx^2 + \frac{1}{2}m(\frac{dx}{dt})^2 = 定 f$	$\frac{1}{2}\kappa\theta^2 + \frac{1}{2}I(\frac{d\theta}{dt})^2 = 定值$

實驗儀器

圓形鋁片旋轉盤、磁鐵、金屬線(粗、中、細) 、砝碼數個、強力磁鐵個、電腦一套、Science Workshop 500 interface

實驗步驟

(一)儀器架設

- 將圓形鋁片懸掛於上方固定點
 將金屬線(粗、中、細)固定好
 (務必確認螺絲鎖緊,固定好金屬線!)
- 2. 將 Rotary motion sensor 連接至 Science Workshop 500 interface digital input 端
- 第 Science workshop 500 interface 電源開啟
 將電腦開機
- 5. 啟動 Scientific workshop 軟體 Data Studio

(一)儀器架設

實驗步驟

(二)測定扭轉係數 K

- 使用 Scientific workshop 軟體 Data Studio , 選取 graph 改變 x、y 軸的單位,x 軸為 rad;y 軸為 rad/s²
- 對鋁片施一小力,使鋁片扭轉一個小角度後,在電 腦軟體按下『start』,此時電腦會開始記錄實驗數 據
- 3. 鋁片完成振盪後,按下『stop』,利用linear graph 在所得的圖形,記錄其斜率
- 4. 利用 $I \frac{d^2 \theta}{dt^2} = -\kappa \theta$ 求出粗中細三條金屬線的扭轉係數 κ

(二)測定扭轉係數 K

(二)測定扭轉係數 K

實驗數據國立東華大學應用物理所

(二)測定扭轉係數K

圓形鋁片質量= <u>0.12873</u> kg; 圓形鋁片半徑= <u>0.0475</u> m 圓形鋁片轉動慣量 $I = \frac{1}{2}mR^2 = \frac{1.45 \times 10^{-4}}{2}kg \cdot m^2$

金屬線	斜率(1/s ²)	扭轉係數 $\kappa = -I \times 斜率$ (kg · m ² /s ²)	平均 K 值
粗			
中			
		2	
	-54.94	7. 97×10^{-3}	
細	-54.36	7.88×10 ⁻³	7. 9×10^{-3}
	-54 20	7 86×10 ⁻³	

國立東華大學 應用物理所 實驗步驟

(三)探討週期與轉動慣量的關係

- 使用 Scientific workshop 軟體 Data Studio
 , 選取 graph 改變 x、y 軸的單位,x 軸為
 second; y 軸為 rad
- 對鋁片施一小力,使鋁片扭轉一個小角度後,在 電腦軟體按下『start』,此時電腦會開始記錄實 驗數據
- 3. 鋁片完成振盪後,按下『stop』

由扭轉角度θ與時間t關係圖形中算出振盪週期
 改變轉動慣量(在鋁片上放置砝碼),重複步驟
 繪製轉動慣量I與週期的平方T²的關係圖

(三)探討週期與轉動慣量的關係

實驗數據

(三)探討週期與轉動慣量的關係

(三)探討週期與轉動慣量的關係(m:砝碼質量 r:砝碼至支點距離)

金屬線	平均 κ 值	加掛砝碼 質量(kg)	轉動慣量 $I = \frac{1}{2}MR^2 + mr^2$	實驗值 週期T	實驗值 T ²	理論值 $T^2 = 4\pi^2 \frac{I}{K}$	誤差 (%)
粗							
Р							
細	7. 9×10 ⁻³	0	1.45×10^{-4}	0.86	0.740	0.724	2.2%
		0.04	2.09×10 ⁻⁴	1.02	1.040	1.043	0.2%
		0.08	2. 73×10^{-4}	1.15	1.323	1.363	2.9%

(三)探討週期與轉動慣量的關係

轉動慣量-週期平方關係圖

國立東華大學 應用物理所 實驗步驟

(四)阻尼振盪

- 1. 於鐵螺絲正上方的鋁片上,放置一個強力磁鐵
- 在電腦軟體按下『start』後,對鋁片施一小力, 使鋁片扭轉一個小角度,此時電腦會開始記錄實 驗數據,並繪出θ-t圖
- 3. 鋁片完成振盪後,按下『stop』
- 4. 從圖形中找出半衰期 $T_{\frac{1}{2}} = \frac{2\ln 2}{\lambda}$, 求出阻尼係數 λ
- 5. 改變磁鐵位置(鐵螺絲正上方0°、90°、180°位置)
 , 重複上述步驟,並觀察變化
- 6. 更換金屬線,重複上述步驟,並觀察變化

(四)阻尼振盪

(四)阻尼振盪

(四)阻尼振盪

金屬線	強力磁鐵位置 (鐵螺絲上方角度)	半衰期 T _½	阻尼係數 $\lambda = \frac{2 \ln 2}{T_{\frac{1}{2}}}$
粗	0 °		
	90°		
	180°		
中	0 °		
	90°		
	180°		
細	0 °	5.1	0.2718
	90°	4.95	0.2801
	180°	4.8	0.2888