
通識課程-光電科技第一章自然之光

說明: <u>蟹狀星雲 (Crab Nebula, M1)</u>是西元1054年 (北宋 至和元年),一顆<u>恆星爆炸</u>所留下的遺骸,它的內部到處都是神祕的細絲狀結構。 <u>古中國</u>的天文官詳盡地<u>記錄</u>了這個壯觀的<u>超新星爆炸</u>,而美國西南部的<u>印地安人 (Anasazi Indian)</u>很可能也曾看過這顆超新星。

- These are images of the Crab Nebula
- They are (clockwise from upper left) taken with
 - x-rays
 - visible light
 - radio waves
 - infrared waves

癒光 (Polar aurora)

■ 極光(Polar aurora)出現于地球的高磁緯地區上空,是一種絢麗多彩的發光現象。由來自地球磁圈或太陽的高能帶電粒子流(太陽風)使高層大氣分子或原子激發(或電離)而產生。極光最易出現的時期是春分和秋分兩個節氣來臨之前,且春秋兩季出現頻率更甚夏冬。

- 根據美國國家航空暨太空總署「瑟宓斯衛星任務」 (2007/12)(Themis mission)傳回的新數據,科學家發現太陽釋放的帶電粒子像一道氣流飛向地球,碰到北極上空磁場時又形成若干扭曲的磁場,帶電粒子的能量在瞬間釋放,以燦爛眩目的北極光形式呈現。
- □ 這項研究係由美國<u>加州大學洛杉磯分校</u>的安吉羅波洛斯 主持,其研究結果已於2007年12月9日在「美國地球物理 聯合會」的學術會議中發表。

極光

哪裡可以看到極光?

- 高緯度地區比較容易看到明亮的極 光弧(極光弧又叫做分立極光)
- 中緯度地區比較常看到朦朧的擴散極光。一年中,偶爾幾天磁暴時可看到壯觀的分立極光。
- 磁暴時,會出現像舞龍一般壯觀的極光弧,分布的範圍,涵蓋中緯與高緯地區。
- 台灣目前的磁緯度很低,只有十三點五度。大約要再等三百年後,才 精機會在磁暴時看到壯麗的極光!

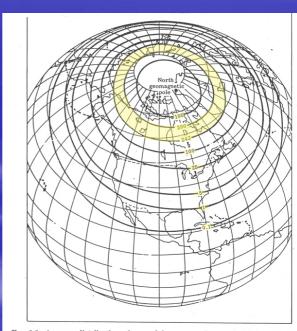
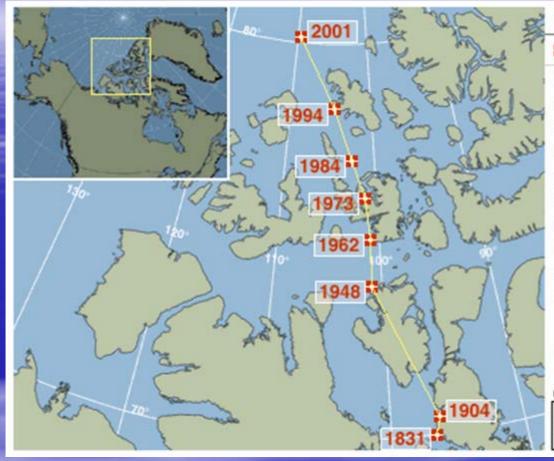



Fig. 6.9. Average distribution of annual frequency of auroral sightings if visibility

磁極位置在東西半球之間晃動著...

Wandering Pole

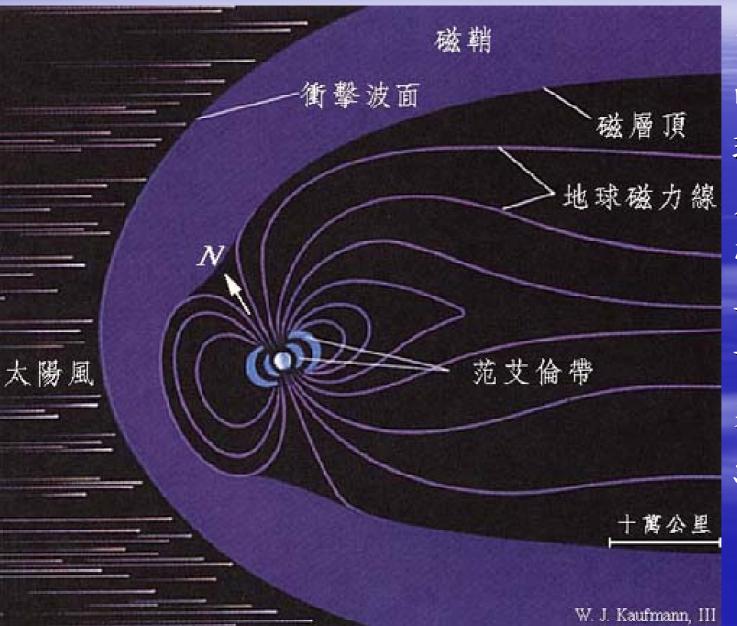
Position of North Magnetic Pole by year

While the North Magnetic Pole often skips around many miles each day in an oval loop, on average it migrates from 6 to 25 miles (10 to 40 km) each year to the north/northwest. The points on the map of the Canadian Arctic depict where explorers have plotted the migrating pole for almost two centuries, including Norwegian Roald Amundsen in 1904.

Source: Natural Resources Canada.

map created with:

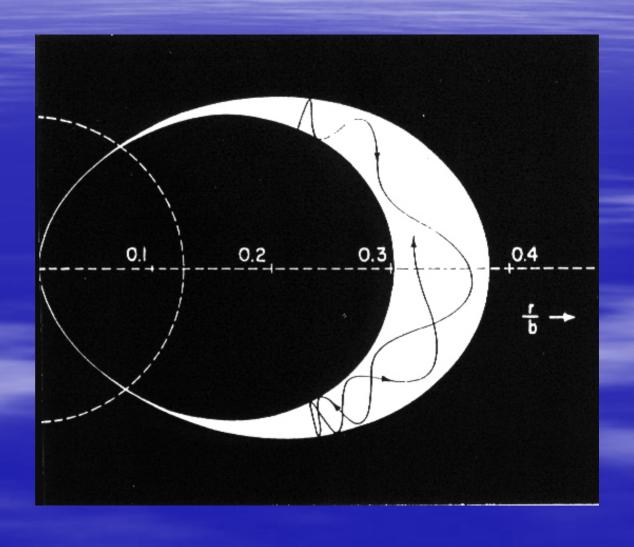
www.curious-software.com


位在西伯利亞的可能年代約為 西元0、800、1600、2300年(前後200年)

> 位在加拿大的可能年代約為 西元400、1200、 1900年(前後200年)

極光什麼時候會出現?

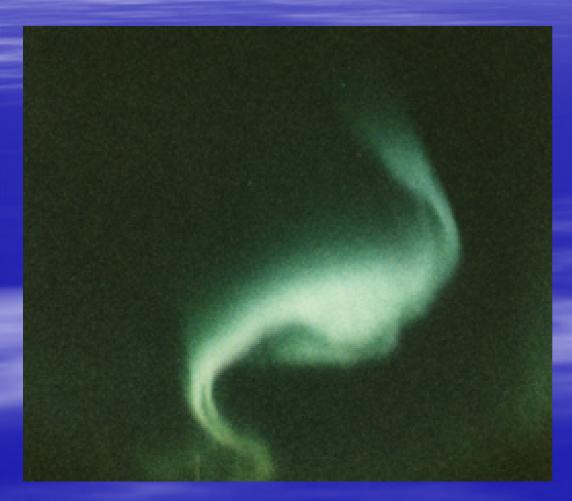
- □高緯地區,極光橢圓圈內的地方,每天晚上 (尤其是午夜前),如果天空晴朗,一定可 以看到極光。
- 木星的極光,通常出現在午夜以後,因為木星的磁場方向與地球的磁場方向相反!
- 非常劇烈的極光活動,通常發生在太陽閃焰之後的一兩天內,這段時間裡,全球地表的磁場也發生大幅變動,故稱為磁暴!


造成壯觀的極光的原因

由於電磁力 的作用,地 球的磁場在 太陽風中的 帶電高能粒 子的吹襲之 下,產生了 著名的磁層 結構。

造成擴散極光的原因

地球的磁偶極場 可以抓住電子與 正離子所組成的 雷漿。故有磁瓶 之稱。可是磁瓶 中的電漿會產生 電磁場波動,使 得少量的高能電 漿得以漏出磁 瓶,像毛毛雨一 般,落入中緯區 夜空造成擴散極 光。


簾幕狀的極光

磁暴時,像舞龍一般的藍色極光弧 (N²⁺)

每晚可見的綠色極光

難得一見的紅色極光 $(O_2 \rightarrow O + O)$

磁暴時,難得一見之紅綠相間的極光 $(O_2 \rightarrow O + O)$


参考書目

■ 1.追著極光跑:阿拉斯加費爾班克斯雪地風情洪嘉輝,國立中興大學中文系

生物發光-螢火蟲

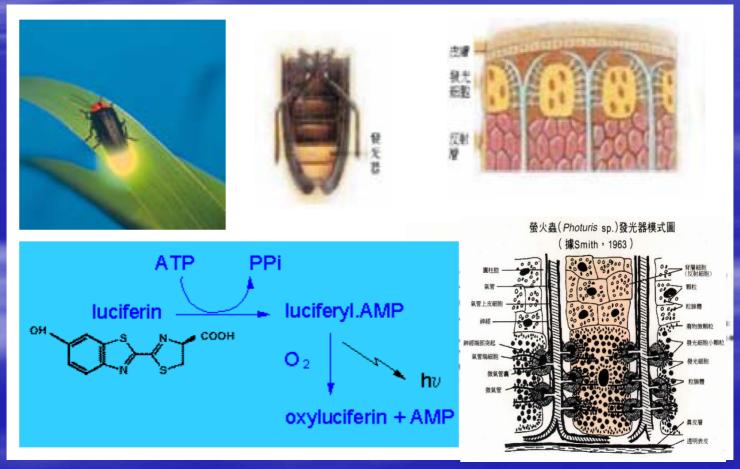
螢火蟲共振

雙-節拍器

Vibrationdata Presents

Synchronization of Metronomes

By Tom & Joseph Irvine


www.vibrationdata.com

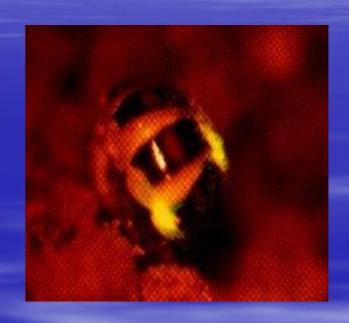
多-節拍器

螢火蟲如何發光?

螢火蟲的發光,簡單來說,是螢光素(luciferin)在螢光素的催化下,發生的一連串複雜生化反應;而光,即是這個過程中所釋放的能量。由於不同種類的螢火蟲,發光的型式不同,因此在種類之間自然形成隔離。

- 生物學家發現,螢火蟲尾部的白色排狀部位就是它發光的位置,稱作「發光器」。在發光器內佈滿含磷的發光質(luciferin)及一種發光酵素。
- □ 「發光質」在「發光酵素」的催化下,經過一連 串的氧化還原反應產生光。
- 由於種類不同,螢火蟲發光頻率也有差異;而耐人專味的是不同種類的螢火蟲,所發出的光也可能不同。以黃綠螢為例,光呈黃色;紅胸黑翅螢則發橙色光;而端黑螢則發黃綠色光。

冷光vs.熱光


螢火蟲的「發光質」經過化學反應所產生的 能量,絕大部分都是用來發光,只有2%~10% 的能量轉換成「熱能」,這些熱再經由自然 的冷卻後幾乎沒有什麼殘留,所以用手觸摸 也蟲體也不會有灼熱的感覺,這種光稱之為 「冷光」。

螢火蟲個體雖小,由於牠能有效地利用能量來發光,所以發出來的光卻能長長久久。

螢火蟲

大場雌光螢雄蟲

雙色垂鬚螢

有些螢火蟲的幼蟲或卵也會發光

求偶與交尾

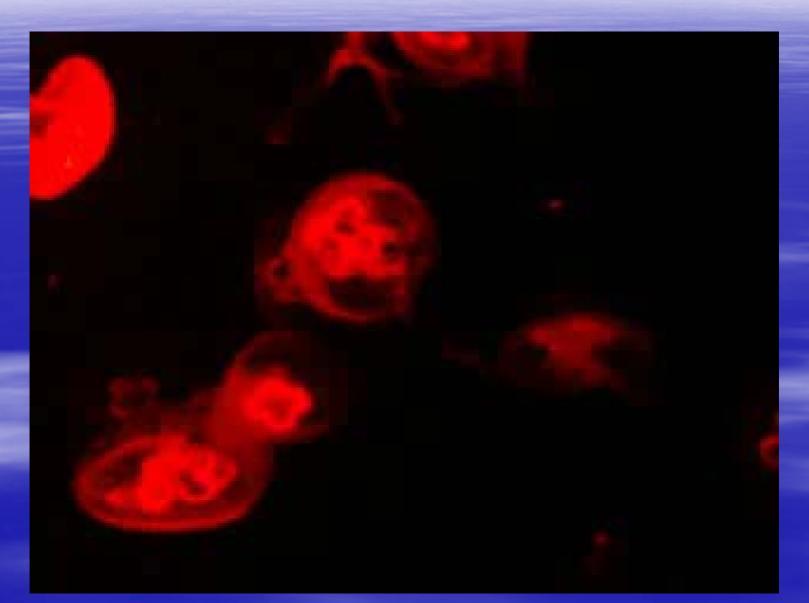
- 正在向雌螢火蟲示愛的 雄蟲
- 螢雌蟲首肯之後,兩隻 螢火蟲準備開始交尾

螢火蟲的生活史

兩週孵化

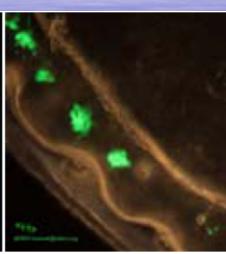
幼蟲

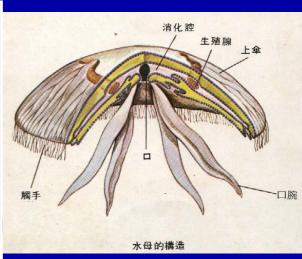
雌蟲在草地、水邊的苔蘚植物或潮濕的地面產卵


以螺貝類、蛞蝓、蚯蚓等爲食

翩然飛舞的成蟲

幼蟲通常經歷5~7次的蛻皮才會化蛹


海洋公園水母



水母身體構造

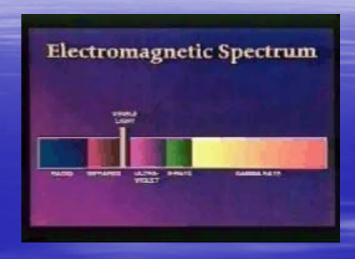
Protein

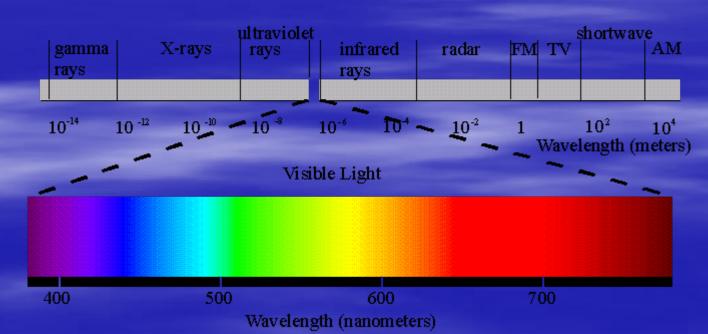
Protein

Protein

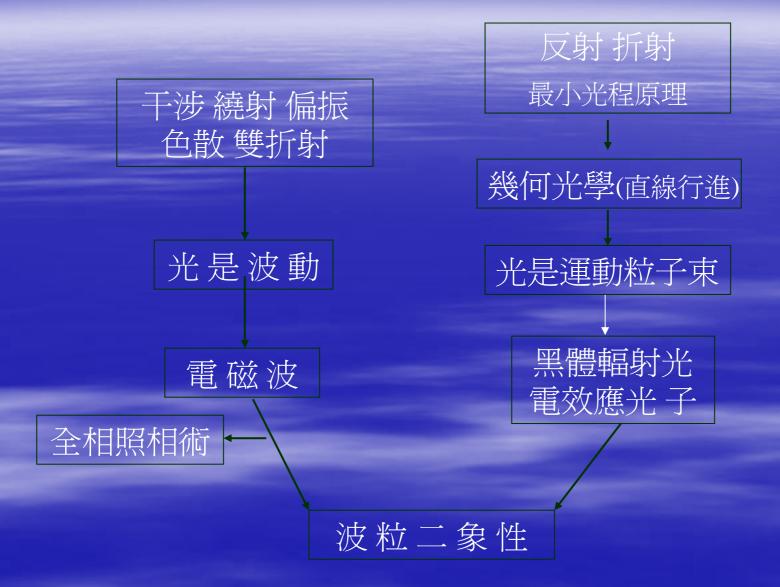
$$O=C=O$$
 $O=C=O$
 O

水母會發光

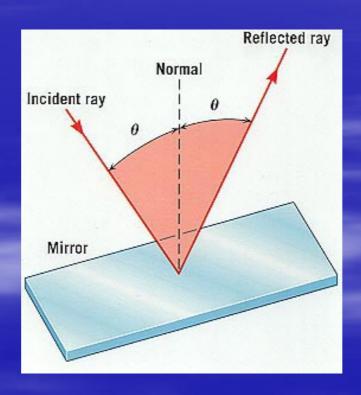

水母發光靠的是一種叫埃奎明的奇妙的蛋白質,這種蛋白質和鈣離子相混合的時候,就會發出強光來。


水母預知海洋風暴的訊息

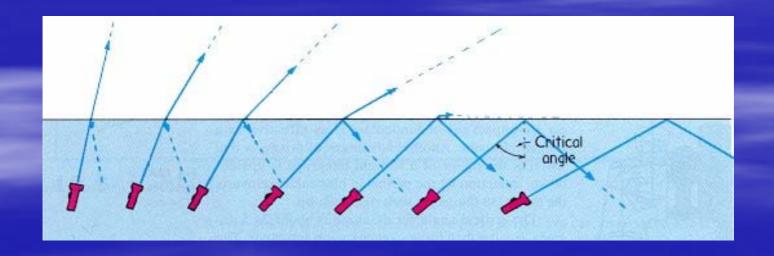
- 海上風暴來臨以前,海底有一種次聲波發出, 它的速度比風和海浪還快。
- 這種次聲波,人耳感覺不到,而水母卻可以接收得到,這得助於牠的冠邊緣的特殊液囊,水母觸手中間的細柄上有一個小球,裏面有一粒小小的聽石,這是水母的"耳朵"


光的原理

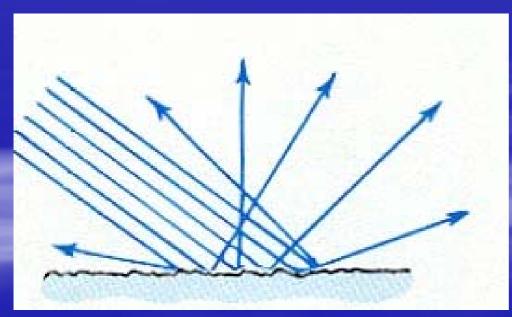
電磁波的頻率,從幾個赫茲(一赫茲等於每秒鐘振盪一次的頻率,用 Hz 表示)以下,一直到 1024 赫茲以上,範圍可以說很廣。整個頻譜區可大致分爲長波、無線電波(無線電波中包括了微波),還有紅外線、可見光、紫外線,接著還有 X 光、γ射線等。



光的物理性質


反射

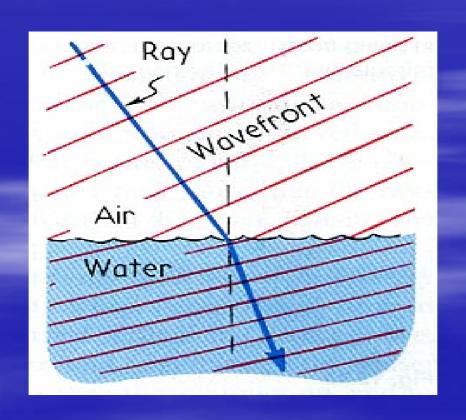
□ 反射定律:反射角=入射角


全反射與臨界角

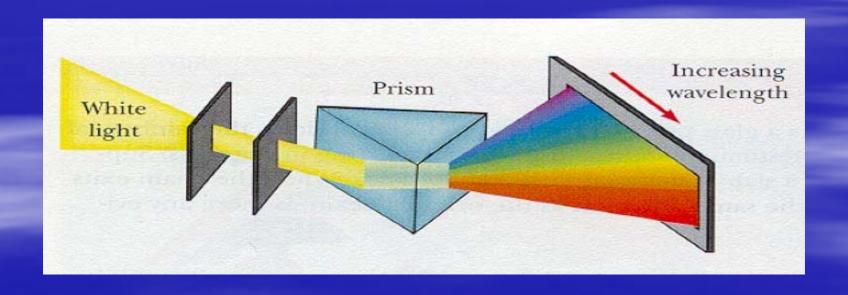
$$\sin \theta_{\rm c} = \frac{n_2}{n_1} \sin 90^{\circ} = \frac{n_2}{n_1}$$

漫射

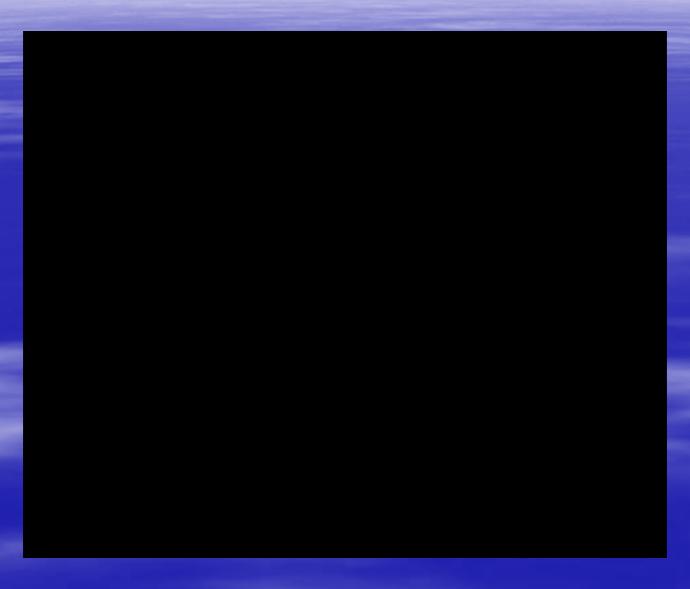
」一個粗糙面可視為是由很多很小的 鏡面反射面所組成.



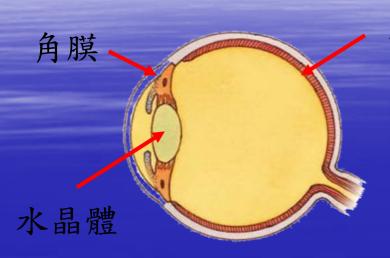
由紙面上反射的可見光


折射:波前的偏折

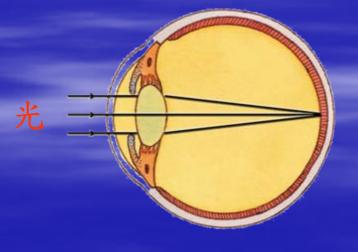
當光線自一介質進入另一密度較大的介質(如自空氣 進入水中時)常常會向法線方向偏折



折射:不同色光的折射


□ 波長越短的光偏折越大(藍光偏折較紅光大)

折射與全反射


眼睛是怎麼看到光線的?

視網膜

课 眼球內主要的構造 是角膜、水晶體和 視網膜。

▶ 外來的光照入角膜和水晶體,聚焦落在有感光能力的視網膜上。若是光沒能聚焦在視網膜上,就會看不清楚。

光檢測元件(光產生電)

太陽能電池(光產生電)

THINK YOU,