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1 Introduction
Structural VAR embeds economic theory within time series models, providing a
convenient and powerful framework for policy analysis. Impulse response func-
tion (IRF) tracks the impact of any variable on others in the system. It is an essen-
tial tool in empirical causal analysis and policy effectiveness analysis. This note
reviews important concepts related to impulse response function and structural
VAR.

2 Impulse response function
Let Yt be a k-dimensional vector series generated by

Yt = A1Yt−1 + · · ·+ ApYt−p + Ut

= Φ(B)Ut =
∞∑
i=0

ΦiUt−i (1)

I = (I − A1B − A2B − · · · − ApB
p)Φ(B) (2)

where cov(Ut) = Σ, Φi is the MA coefficients measuring the impulse response.
More specifically, Φjk,i represents the response of variable j to an unit impulse in
variable k occurring i-th period ago. IRF are used to evaluate the effectiveness of
a policy change, say increasing rediscount rate.

As Σ is usually non-diagonal, it is impossible to shock one variable with other
variables fixed. Some kind of transformation is needed. Cholesky decomposition
is the most popular one which we shall turn to now. Let P be a lower triangular
matrix such that Σ = PP ′. then eq. (1) can be rewritten as

Yt =
∞∑
i=0

Θiwt−i

where Θi = ΦiP, wt = P−1Ut, and E(wtw
′
t) = I . Let D be a diagonal matrix

with same diagonals with P and W = PD−1, Λ = DD′. After some manipula-
tions, we obtain

Yt = B0Yt + B1Yt−1 + · · ·+ BpYt−p + Vt

where B0 = Ik − W−1, W = PD−1, Bi = W−1Ai. Obviously, B0 is a lower
triangular matrix with 0 diagonals. In other words, Cholesky decomposition im-
poses a recursive causal structure from the top variables to the bottom variables
but not the other way around.
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Useful remarks

1. For a K-dimensional stationary VAR(p) process,

φjk,i = 0, for j 6= k, i = 1, 2, · · ·

is equivalent to

φjk,i = 0 for i = 1, · · · , p(K − 1)

.

In other words, if the first pK − p responses of variable j to an impulse in
variable k is zero, then all the following responses are all zero. (Lutkepohl
Proposition 2.4).

2. Variable k does not cause variable j if and only if Φjk,i = 0, i = 1, 2, · · · .

Critiques of IRF

1. Sensitive to variables ordering.
Generalized impulse response function by Pesaran offers a partial solution
and Granger and Swanson (1997) proposed a different but more promising
one.

2. Omitting important variables may lead to major distortions in IRF and make
the empirical results worthless. However, its impact on forecasting could
small. Why?

3 Generalized impulse response function
To circumstance the problem of ordering dependence of IRF, Pesaran and Shin
(1998) proposed the GIRF.

Xt =
p∑

i=1

AiXt−i + Ut

=
∞∑
i=0

ΦiUt−i

Φi = A1Φi−1 + A2Φi−2 + · · ·+ ApΦi−p, i = 1, 2, · · ·
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where E(UtU
′
t) = Σ

Cholesky decomposition of Σ, PP ′ = Σ so that

Xt =
∞∑
i=0

(AiP )(P−1Ut−i)

IRF is
Ψo

j(n) = ΦnPej, n = 0, 1, 2, · · ·

where ej is an m × 1 selection vector with unity as its j-th element and zeros
elsewhere.

GIRF is defined as :

GIRFx(n, δj, Ωt−1) = E(Xt+n|ujt = δj, Ωt−1)− E(Xt+n|Ωt−1)

Assume normal distribution for Ut

E(Ut|Ujt = δj) = (σ1j, σ2j, · · · , σmj)
′σ′jjδj = ΣUjejσ

−1
jj δj

Unscaled GIRF is:

(
ΦnΣej√

σjj

)(
δj√
σjj

), n = 0, 1, 2, · · ·

Scaled GIRF by setting δj =
√

jj,

Ψg
j (n) = σ

−1/2
jj ΦnΣUj, n = 0, 1, 2, · · ·

Forecast error decomposition:

θo
ij =

∑n
l=0(U

′
lΦjPUj)

2∑n
l=0(U

′
iΦlΣA′

lUi)
; θg

ij =
σ−1

ii

∑n
l=0(U

′
iΦlΣUj)

2∑n
l=0 U ′

iΦlΣΦ′
lUi

, i, j = 1, · · · , m

Note that
∑m

j=1 θo
jj(n) = 1,

∑m
j=1 θg

jj(n) 6= 1.

Comparing GIRF and IRF

1. In stead of controlling the impact of correlation among residuals, GIRF fol-
lows the idea of nonlinear impulse response function and compute the mean
impulse response function. When one variable is shocked, other variables
also vary as is implied by the covariance. GIRF computes the mean by
integrating out all other shocks.
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2. When Σ is diagonal, GIRF is the same as IRF.

3. GIRF is unaffected by ordering of variables

4. The generalized impulse response of the effect of an unit shock to j-th equa-
tion is the same as that of an orthogonal impulse response but different for
other shocks. To be specific,

Φg
1(n) = Φo

1(n)

Φg
j (n) 6= Φo

j(n), j = 2, 3, · · · , m

Thus the GIRF can be easily computed by usual IRF with each variable as
leading one.

5. The formula of GIRF is derived under the assumption of multivariate nor-
mality that might not be true for some empirical applications.

4 Unit Root, Cointegration and IRF
1. If there exists unit roots and/or cointegration, then estimated IRF is inconsis-

tent at long horizons in unrestricted VARs. Error correction model produces
consistent IRF and optimal predictions.

2. IRF estimates based upon ECM is consistent.

3. Proper procedures for computing IRF for a cointegrated system are:

(a) Determine the cointegration rank by LR test;

(b) Estimate the ECM model: ∆Yt = αβ′Yt−1+
∑p−1

i=1 Γi∆Yt−i+ΦDt+Ut;

(c) Converted the ECM back to VAR model;

(d) Use the resulting VAR model to perform IRF.

5 Structural VAR
This part is taken from the VAR.SRC written by Norman Morin (nmorinfrb.gov).
REDUCED FORM

Yt = A1 ∗ Yt−1 + · · ·+ ApYt−p + W ∗ Z(t) + c + d ∗ t + Ut
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where Y denotes vector of endogenous variables of interest, X vector of exoge-
nous variables, U is vector of residuals and EUtU

′
t = Σ. The innovations can be

written terms of uncorrelated error terms

Ut = G ∗ Ut + Et

E(EtE
′
t) = D

where D is a diagonal matrix whose diagonals are the variances of E and G has
zeroes on the diagonals. Now, let B ∗ Ut = Et or A ∗Et = Ut where B = I −G,
and A = B−1, where B and A have unit diagonals Thus,

B ∗ Σ ∗B′ = D = E(EtE
′
t)

A ∗D ∗ A′ = Σ = E(UtU
′
t)

This will yield the structural form based on the orthogonalization.

B ∗ Yt = B1 ∗ Yt−1 + · · ·+ Bp ∗ Yt−p + F ∗X(t) + v + k ∗ t + Et

with Bi = B ∗ Ai, i = 1, · · · , p, F = B ∗W, v = B ∗ c, and k = B ∗ d.
Given B and D, one can write a structural form vector moving average based

on the reduced form matrices A1, · · · , Ap

Yt = Ut + C1 ∗ Ut−1 + C2 ∗ Ut−2 + · · ·
Yt = M0 ∗ Et + M1 ∗ Et−1 + M2 ∗ Et−2 + · · ·

The coefficient (i, j)th element of Mk is the effect on variable i of a shock to
j-th structural form innovation k periods ago.

The various choices of orthogonalizations for impulse responses place condi-
tions on the structural form matrices B and D:

1. CHOLESKY:
Factors Σ into P ∗ P ′ where P is lower triangular whose diagonals are the
standard deviations of E. Thus, the first variable in the VAR is only affected
contemporaneously by the shock to itself. The second variable in the VAR
is affected contemporaneously by the shocks to the first variable and the
shock to itself, and so on... P = B−1D1/2

2. BERNANKE-SIMS:
Factors Σ into B−1DB−1′ where D is diagonal (with the variances of E),
B has unit diagonals, but allows for the user to force certain B(i, j) = 0,
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(not for i = j) and will test these restrictions. You are asked for the number
of nonzero NONDIAGONAL free coefficients, and is then asked to input
the row number and column number for each non-diagonal free coefficient
(this is done by entering the row number and column number separated by
a comma (preferred) or a space).

3. HARVEY-SARGAN:
Factors Σ into B−1DB−1′ where the user can distribute unit coefficients
and zeros among both B and D, but one or the other will have unit diag-
onals. The user chooses which matrix will contain unit diagonals, is then
prompted for the number of NON-DIAGONAL free coefficients in B and in
D, and is then asked to input the row number and column number for each
non-diagonal free coefficient (this is done by entering the row number and
column number separated by a comma (preferred) or a space).

4. IDENTITY:
Assumes Σ is diagonal, i.e., the reduced form innovations are contempora-
neously uncorrelated.

5. BLANCHARD-QUAH:
Factors Σ into PP ′ where P = C−1

1 G where G is the LT Cholesky decom-
position of C1Σ

′
1C

′
1 and C1 is the sum of the ∞-order VMA coefficients

from the Wold decomposition of the VAR. This yields impulse responses
such that the 1st variable may have long run effects on all variables, the 2nd
may have long run effects on all but the 1st, the 3rd on all but the 1st and
2nd, etc . . .. In the BQ article, shocks are assigned as ”supply” and ”de-
mand” shocks, without reference to a variable ordering. Here, the shocks
are labeled with the ordering of the variables in the VAR, but need not be
given that interpretation. B = P−1 and D = I .

NOTE that 2, 3, and 4 will test the restrictions. For 2 and 3, the number of free
coefficients (restrictions) should be less than or equal to p(p + 1)/2, where p is
number of variables, and there must be no zeros on the diagonals

Softwares
1. Impulse responses: Reduced form and structural form

• VAR.SRC/RATS by Norman Morin

• SVAR.SRC/RATS by Antonio Lanzarotti and Mario Seghelini
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• VAR/View/Impulse/Eviews

• FinMetrics/Splus

2. Cointegration:

• CATS/RATS

• COINT2/GAUSS

• VAR/Eviews

• urca/R

• FinMetrics/Splus

3. Impulse response under cointegration constraint:
CATS,CATSIRFS/RATS
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