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Abstract

�is note reviews the de�nition, distribution theory and modeling strategy of test-
ing causality. Starting with the de�nition of Granger Causality, we discuss various
issues on testing causality within stationary and nonstationary systems. In addi-
tion, we cover the graphical modeling and spectral domain approaches which are
relatively unfamiliar to economists. We compile a list ofDo andDon’t Do on causal-
ity testing and review several empirical examples.



1 Introduction
Testing causality among variables is one of the most important and, yet, one of the
most di�cult issues in economics.�e di�culty arises from the non-experimental
nature of social science. For natural science, researchers can perform experiments
where all other possible causes are kept �xed except for the sole factor under in-
vestigation. By repeating the process for each possible cause, one can identify the
causal structures among factors or variables.�ere are no such luck for social sci-
ence, and economics is no exception. All di�erent variables a�ect the same variable
simultaneously and repeated experiments under control are infeasible (experimen-
tal economics is no solution, at least, not yet).
Two most di�cult challenges are :

1. Correlation does not imply causality. Distinguishing between these two is by
no means an easy task.

2. �ere always exist the possibility of ignored common factors. �e causal
relationship among variables might disappear when the previously ignored
common causes are considered.

While there are no satisfactory answer to these two questions and there might
never be one, philosophers and social scientists have attempted to use graphical
models to address the second issue. As for the �rst issue, time series analysts look
for rescue from the unique unidirectional property of time arrow: cause precedes
e�ect. Based upon this concept, Clive W.J. Granger has proposed a working de�-
nition of causality, using the foreseeability as a yardstick which is called Granger
causality.�is note examines and reviews the key issues in testing causality in eco-
nomics.
In additional to this introduction, Section 2 discusses the de�nition of Granger

causality. Testing causality for stationary processes are reviewed in Section 3 and
Section 4 focuses on nonstationary processes. We turn to graphical models in sec-
tion 5. A to-do and not-to-do list is put together in Section 6.

2 De�ning Granger causality

2.1 Two assumptions
1. �e future cannot cause the past.�e past causes the present or future. (How
about expectation?)
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2. A cause contains unique information about an e�ect not available elsewhere.

2.2 De�nition
Xt is said not to Granger-cause Yt if for all h > 0

F(Yt+h∣Ωt) = F(yt+h∣Ωt − Xt)

where F denotes the conditional distribution and Ωt − Xt is all the information in
the universe except series Xt . In plain words, Xt is said to not Granger-cause Yt if
X cannot help predict future Y .

Remarks:
• �e whole distribution F is generally di�cult to handle empirically and we
turn to conditional expectation and variance.

• It is de�ned for all h > 0 and not only for h = 1. Causality at di�erent h does
not imply each other.�ey are neither su�cient nor necessary.

• Ωt contains all the information in the universe up to time t that excludes the
potential ignored common factors problem. �e question is: how to mea-
sure Ωt in practice?�e unobserved common factors are always a potential
problem for any �nite information set.

• Instantaneous causality Ωt+h − xt+h and feedback is di�cult to interpret un-
less on has additional structural information.

A re�ned de�nition become as below:
Xt does not Granger cause Yt+h with respect to information Jt , if

E(Yt+h∣Jt , Xt) = E(Yt+h∣Jt)

Remark: Note that causality here is de�ned as relative to. In other words, no
e�ort is made to �nd the complete causal path and possible common factors.

2.3 Equivalent de�nition
For a l-dimension stationary process, Zt , there exists a canonical MA representa-
tion

Zt = µ +Φ(B)ut

= µ +
∞

∑
i=1
Φiut−i , Φ0 = Il
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A necessary and su�cient condition for variable k not Granger-cause variable j is
that Φ jk,i = 0, for i = 1, 2,⋯. If the process is invertible, then

Zt = C + A(B)Zt−1 + ut

= C +
∞

∑
i=1

AiZt−i + ut

If there are only two variables, or two-group of variables, j and k, then a necessary
and su�cient condition for variable k not to Granger-cause variable j is that A jk,i =

0, for i = 1, 2,⋯.�e condition is good for all forecast horizon, h.
Note that for a VAR(1) process with dimension equal or greater than 3, A jk,i =

0, for i = 1, 2,⋯ is su�cient for non-causality at h = 1 but insu�cient for h > 1.
Variable k might a�ect variable j in two or more period in the future via the e�ect
through other variables. For example,

⎡
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⎢
⎢
⎢
⎢
⎣
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⎥
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�en,

y0 =

⎡
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⎢
⎢
⎢
⎢
⎣
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⎥
⎥
⎥
⎥
⎦
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⎢
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⎥
⎥
⎦

; y1 = A1y0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

.5

.1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; y2 = A21 y0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

.25
.06
.02

⎤
⎥
⎥
⎥
⎥
⎥
⎦

To summarize,

1. For bivariate or two groups of variables, IR analysis is equivalent to applying
Granger-causality test to VAR model;

2. For testing the impact of one variable on the other within a high dimensional
(≥ 2) system, IR analysis can not be substituted by the Granger-causality test.
For example, for anVAR(1) processwith dimension greater than 2, it does not
su�ce to check the upper right-hand corner element of the coe�cientmatrix
in order to determine if the last variable is noncausal for the �rst variable.
Test has to be based upon IR.

See Lutkepohl(1993) and Dufor and Renault (1998) for detailed discussion.
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3 Testing causality for stationary series

3.1 Impulse response and causal ordering
It is well known that residuals from a VAR model are generally correlated and ap-
plying the Cholesky decomposition is equivalent to assuming recursive causal or-
dering from the top variable to the bottom variable. Changing the order of the
variables could greatly change the results of the impulse response analysis.

3.2 Causal analysis for bivariate VAR
For a bivariate system, yt , xt de�ned by

[
yt
xt

] = [
A11(B) A12(B)

A21(B) A22(B)
] [

yt−1
xt−1

] + [
uyt

uxt
]

= [
Φ11(B) Φ12(B)
Φ21(B) Φ22(B)

] [
uyt−1
uxt−1

] + [
uyt

uxt
]

xt does not Granger-cause yt if Φ12(B) = 0 or Φ12,i = 0, for i = 1, 2,⋯. �is
condition is equivalent to A12,i = 0, for i = 1, 2,⋯,p. In other words, this corre-
sponds to the restrictions that all cross-lags coe�cients are all zeros which can be
tested by Wald statistics.
We now turn to determining the causal direction for bivariate VAR system. For

ease of illustration, we shall focus upon bivariate AR(1) process so that Ai j(B) =

Ai j, i , j = 1, 2 as de�ned above.�e results can be easily generalized to AR(p) case.
Four possible causal directions between x and y are:

1. Feedback, H0, x ↔ y

H0 = (
A11 A12
A21 A22

)

2. Independent, H1 ∶ x ⊥ y

H1 = (
A11 0
0 A22

)

3. x causes y but y does not cause x ,H2, y /→ x

H2 = (
A11 A12
0 A22

)
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4. y causes x but x does not cause y,H3, x /→ y

H3 = (
A11 0
A21 A22

)

Caines, Keng and Sethi(1981) proposed a two-stage testing procedure for deter-
mining causal directions. In �rst stage, test H1 (null) against H0, H2 (null) against
H0, and H3 (null) against H0. If necessary, test H1 (null) against H2, and H1 (null)
against H3. See Liang, Chou and Lin(1995) for an application.

3.3 Causal analysis for multivariate VAR
Possible causal structure grows exponentially as number of variables increase. Pair-
wise causal structuremight changewhendi�erent conditioning variables are added.
Caines, Keng and Sethi (1981) provided a reasonable procedure.

1. For a pair (X ,Y), construct bivariate VAR with order chosen to minimize
multivariate �nal prediction error (MFPE);

2. Apply the stagewise procedure to determine the causal structure of X ,Y ;

3. If a process X, has nmultiple causal variables, y1, . . . , yn, rank these variables
according to the decreasing order of their speci�c gravity which is the inverse
ofMFPE(X , yi);

4. For each caused variable process, X, �rst construct the optimal univariateAR
model using FPE to determine the lag order. �e, add the causal variable,
one at a time according to their causal rank and use FPE to determine the
optimal orders at each step. Finally, we get the optimal ordered univariate
multivariate AR model of X against its causal variables;

5. Pool all the optimal univariate AR models above and apply the Full Infor-
mation Maximum Likelihood (FIML) method to estimate the system. Fi-
nally perform the diagnostic checking with the whole system as maintained
model.

3.4 Causal analysis for Vector ARMAmodel (h = 1)
Let X be n × 1 vector generated by

Φ(B)Xt = Θ(B)at

5



Xi does not cause X j if and only if

det(Φi(z), Θ( j)(z)) = 0

where Φi(B) is the ith column of the matrix Φ(z) and Θ( j)(z) is the matrix Θ(z)

without its jth column.
For bivariate (two-group) case,

(
Φ11(B) Φ12(B)
Φ21(B) Φ22(B)

)(
Xit

X2t
) = (

Θ11(B) Θ12(B)
Θ21(B) Θ22(B)

)(
a1t
a2t

)

�en, Xi does not cause X j if and only if

Φ21(z) −Θ21(z)Θ−1(z)11Φ11(z) = 0

If n1 = n2 = 1,�en, Xi does not cause X j if and only if

Θ11(z)Φ12(z) −Θ21(z)Φ11(z) = 0

General testing procedures is:

1. Build a multivariate ARMAmodel for Xt ,

2. Derive the noncausality conditions in term of AR and MA parameters, say
R j(βl) = 0, j = 1, . . . ,K

3. Choose a test criterion, Wald, LM or LR test.

Let

T(β̂l) = (
∂R j(B)

∂βl

∣β l−β̂ l
)k×k

Let V(βl) be the asymptotic covariance matrix of
√
N(β̂l = βl). �en the Wald

and LR test statistics are:

ξW = NR(β̂l)
′[T(β̂l)

′V(β̂l)T(β̂l)]
−1R(β̂l),

ξLR = 2(L(β̂, X) − L(β̂∗, X))

where β̂∗ is the MLE of β under the constraint of noncausality.
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To illustrate, let Xt be a invertible 2-dimensional ARMA(1,1) model.

(
1 − ϕ11B −ϕ12B

−ϕ21B 1 − ϕ22B
)(

X1t
X2t

) = (
1 − θ11B θ12B

θ21B θ22B
)(

a1t
a2t

)

X1 does not cause X2 if and only if

Θ11(z)Φ21(z) −Θ21(z)Φ11(z) = 0
(ϕ21 − θ21)z + (θ11θ21 − ϕ21θ11)z

2 = 0
ϕ21 − θ21 = 0, ϕ11θ21 − ϕ21θ11 = 0

For the vector, βl = (ϕ11, ϕ21, θ11, θ21)′, the matrix

T(βl) =

⎛
⎜
⎜
⎜
⎝

0 θ21
1 −θ11
0 −ϕ21
−1 ϕ11

⎞
⎟
⎟
⎟
⎠

might not be nonsingular under the null of H0 ∶ X1 does not cause X2.
Remarks:

• �e conditions are weaker than ϕ21 = θ21 = 0

• ϕ21 − θ21 = 0 is a necessary condition for H0, ϕ21 = θ21 = 0 is su�cient condi-
tion and ϕ21 − θ21 = 0, &ϕ11 = θ11 are su�cient for H0.

Let H0 ∶ X1 does not cause X2. Consider the following hypotheses:

H10 ∶ ϕ21 − θ21 = 0;
H20 ∶ ϕ21 = θ21 = 0
H30 ∶ ϕ21 ≠ 0, ϕ21 − θ21 = 0, and ϕ11 − θ11 = 0
H̃30 ∶ ϕ11 − θ11 = 0

�en, H30 = H̃30 ∩H10,H20 ⊆ H0 ⊆ H10,H
3
0 ⊆ H0 ⊆ H10.

Testing procedures:

1. Test H10 at level α1. If H10 is rejected, then H0 is rejected. Stop.

2. If H10 is not rejected, test H20 at level α2. If H20 is not rejected, H0 cannot be
rejected. Stop

3. If H20 is rejected, test H̃
3
0 ∶ ϕ11 − θ11 = 0 at level α2. If H̃30 is rejected, then H0 is

also rejected. If H̃30 is not reject ed, then H0 is also not rejected.
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4 Causal analysis for nonstationary processes
�e asymptotic normal or χ2 distribution in previous section is build upon the
assumption that the underlying processes Xt is stationary. �e existence of unit
root and cointegration might make the traditional asymptotic inference invalid.
Here, I shall brie�y review unit root and cointegration and their relevance with
testing causality. In essence, cointegration, causality test, VAR model and IR are
closely related and should be considered jointly.

4.1 Unit root:
What is unit root?

�e time series yt as de�ned in Ap(B)yt = C(B)єt has an unit root if Ap(1) =

0, C(1) ≠ 0.

Why do we care about unit root?

• For yt , the existence of unit roots implies that a shock in єt has permanent
impacts on yt .

• If yt has a unit root, then the traditional asymptotic normality results usually
no longer apply. We need di�erent asymptotic theorems.

4.2 Cointegration:
What is cointegration?

When linear combination of two I(1) process become an I(0) process, then these
two series are cointegrated.

Why do we care about cointegration?

• Cointegration implies existence of long-run equilibrium;

• Cointegration implies common stochastic trend;

• With cointegration, we can separate short- and long- run relationship among
variables;

• Cointegration can be used to improve long-run forecast accuracy;
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• Cointegration implies restrictions on the parameters and proper accounting
of these restrictions could improve estimation e�ciency.

Let Yt be k-dimensional VAR(p) series with r cointegration vector β(p × r).

Ap(B)Yt = Ut

∆Yt = ΠYt−1 +

p−1

∑
i=1
Γi∆Yt−i +ΦDt +Ut

Yt = C
t

∑
i=1

(Ut +ΦDi) + C∗(B)(Ut +ΦDt) + Pβ⊥Y0

Ap(1) = −Π = αβ′

C = β⊥(α′⊥Γβ⊥)
−1α′⊥

• Cointegration introduces one additional causal channel (error correction
term) for one variable to a�ect the other variables. Ignoring this additional
channel will lead to invalid causal analysis.

• For cointegrated system, impulse response estimates from VAR model in
level without explicitly considering cointegration will lead to incorrect con-
�dence interval and inconsistent estimates of responses for long horizons.

Recommended procedures for testing cointegration:

1. Determine order of VAR(p). Suggest choosing the minimal p such that the
residuals behave like vector white noise;

2. Determine type of deterministic terms: no intercept, intercept with con-
straint, intercept without constraint, time trend with constraint, time trend
without constraint. Typically, model with intercept without constraint is pre-
ferred;

3. Use trace or λmax tests to determine number of unit root;

4. Perform diagnostic checking of residuals;

5. Test for exclusion of variables in cointegration vector;

6. Test for weak erogeneity to determine if partial system is appropriate;
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7. Test for stability;

8. Test for economic hypotheses that are converted to homogeneous restric-
tions on cointegration vectors and/or loading factors.

4.3 Unit root, Cointegration and causality
For a VAR system, Xt with possible unit root and cointegration, the usual causal-
ity test for the level variables could be misleading. Let Xt = (X1t , X2t , X3t)′ with
n1, n2, n3 dimension respectively.�e VAR level model is:

Xt = J(B)Xt−1 + ut

=
k

∑
i=1

JiXt−i + ut

�e null hypothesis of X3 does not cause X1 can be formulated as:

H0 ∶ J1,13 = J2,13 = ⋯ = Jk,13 = 0

Let FLS be the Wald statistics for testing H0.

1. If Xt has unit root and is not cointegrated, FLS converges to a limiting distri-
bution which is the sum of χ2 and unit root distribution. �e test is similar
and critical values can be constructed. Yet, it is more e�cient and easier to
di�erence Xt and test causality for the di�erenced VAR.

2. If there is su�cient cointegration for X3 then FLS → χ2
n1n2k
. , More speci�-

cally, let A = (A1,A2,A3) be the cointegration vector. �e usual asymptotic
distribution results hold if rank(A3) = n3, ie. all X3 appear in the cointegra-
tion vector.

3. If there is not su�cient cointegration, ie. not all X3 appears in the cointe-
gration vector, then the limiting distribution contain unit root and nuisance
parameters.

For the error correction model,

∆Xt = J∗(B)∆Xt−1 + ΓA′Xt−1 + ut

where Γ,A are respectively the loading matrix and cointegration vector. Partition
Γ,A conforming to X1, X2, X3. �en, if rank(A3) = n3 or rank(Γ1) = n1, FML →
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χ2
n1n3k
. In other words, testing with ECM the usual asymptotic distribution hold

when there are su�cient cointegrations or su�cient loading vector.

Remark: �e Johansen test seems to assume su�cient cointegration or su�-
cient loading vector.

Toda andYamamoto (1995) proposed a test of causality without pretesting coin-
tegration. For an VAR(p) process and each series is at most I(k), then estimate the
augmented VAR(p+k) process even the last k coe�cient matrix is zero.

Xt = A1Xt−1 +⋯ + ApXt−k +⋯ + Ap+kXt−p−k +Ut

and perform the usual Wald test Ak j,i = 0, i = 1,⋯, p. �e test statistics is
asymptotical χ2 with degree of freedom m being the number of constraints. �e
result holds no matter whether Xt is I(0) or I(1) and whether there exist cointegra-
tion.
As there is no free lunch under the sun, the Toda-Yamamoto test su�er the

following weakness.

• Ine�cient as compared with ECM where cointegration is explicitly consid-
ered.

• Cannot distinguish between short run and long run causality.

• Cannot test for hypothesis on long run equilibrium, say PPP which is for-
mulated on cointegration vector.

One more remark: Cointegration between two variables implies existence of
long-run causality for at least one direction. Testing cointegration and causality
should be considered jointly.

5 Causal analysis using graphical models
A directed graph assigns a contemporaneous causal �ow among a set of variables
based on correlations and partial correlations. �e edge relationship of each pair
of variables characterizes the causal relationship between them. No edge indicates
(conditional) independence between two variables, whereas an undirected edge
(X − Y) signi�es a correlation with no particular causal interpretation. A directed
edge (Y → X) means Y causes X but X does not cause Y conditional upon other
variables. A bidirected edge (X ↔ Y) indicates bidirectional causality between
these two variables. In other words, there is contemporaneous feedback between
X and Y .
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To illustrate the main idea, let X ,Y , Z be three variables under investigation.
Y ← X → Z represents the fact that X is the common cause of Y and Z. Uncondi-
tional correlation between Y and Z is nonzero but conditional correlation between
Y and Z given X is zero. On the other hand, Y → X ← Z says that both Y and Z
cause X.�us, unconditional correlation between Y and Z is zero but conditional
correlation between Y and Z given X is nonzero. Similarly, Y → X → Z states
the fact that Y causes X and X causes Z. Again, being conditional upon X ,Y is
uncorrelated with Z.�e direction of the arrow is then transformed into the zero
constraints of A(i , j), i ≠ j. Let ut = (Xt ,Yt , Zt)

′ and then the corresponding A
matrix for the three cases discussed above denoted as A1,A2 and A3 are:

A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
a21 1 0
a31 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

;A2 =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 a12 a13
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

;A3 =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 a12 0
0 1 0
a31 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Several search algorithms are available and the PC algorithm seems to be the
most popular one (see Pearl (2000), and Spirtes, Glymour and Scheines (1993) for
the details). In this paper, we adopt the PC algorithm and outline the main algo-
rithm as shown below. First, we start with a graph in which each variable is con-
nected by an edge with every other variable. We then compute the unconditional
correlation between each pair of variables and remove the edge for the insigni�cant
pairs. We then compute the 1-th order conditional correlation between each pair
of variables and eliminate the edge between the insigni�cant ones. We repeat the
procedure to compute the i-th order conditional correlation until i = N-2, where
N is the number of variables under investigation. Fisher’s z statistic is used in the
signi�cance test:

z(i , j∣K) = 1/2(n − ∣K∣ − 3)(1/2) ln(
∣1 + r[i , j∣K]∣

∣1 − r[i , j∣K]∣
)

where r([i , j∣K]) denotes conditional correlation between variables, which i and j

being conditional upon the K variables, and ∣K∣ the number of series for K.
Under some regularity conditions, z approximates the standard normal distri-

bution. Next, for each pair of variables (Y , Z) that are unconnected by a direct
edge but are connected through an undirected edge through a third variable X, we
assign Y → X ← Z if and only if the conditional correlations of Y and Z condi-
tional upon all possible variable combinations with the presence of the X variable
are nonzero. We then repeat the above process until all possible cases are exhausted.
If X → Z, Z −Y and X and Y are not directly connected, we assign Z → Y . If there
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is a directed path between X and Y (say X → Z → Y) and there is an undirected
edge between X and Y , we then assign X → Y .
Pearl (2000) and Spirtes, Glymour, and Scheines (1993) provide a detailed ac-

count of this approach. Demiralp and Hoover (2003) present simulation results to
show how the e�cacy of the PC algorithm varies with signal strength. In general,
they �nd the directed graphmethod to be a useful tool in structural causal analysis.

6 Causality on the spectral domain
Causality on the time domain is qualitative but the strength of causality at each
frequency can bemeasured on spectral domain. Tomymind, this is an ideal model
for analyzing permanent consumption theory. Let (xt , yt) be generated by

[
xt
yt

] = [
Λ11(B) Λ12(B)
Λ21(B) Λ22(B)

] [
ext
eyt

]

Rewrite the above as

[
xt
yt

] = [
Γ11(B) Γ12(B)
Γ21(B) Γ22(B)

] [
ẽxt
ẽyt

]

where

[
Γ11(B) Γ12(B)
Γ21(B) Γ22(B)

] = [
Λ11(B) Λ12(B)
Λ21(B) Λ22(B)

] [
1 0
ρ 1 ]

and

[
ẽxt
ẽyt

] = [
1 0
−ρ 1 ] [

ext
eyt

]

fx(w) =
1
2π

{∣Γ11(z)∣2 + ∣Γ12(z)∣2(1 − ρ2)}

where z = e−iw .
Hosoya’s measure of one-way causality is de�ned as:

My→x(w) = log[
fx(w)

1/2π∣Γ11(z)∣2
]

= log[1 +
∣Λ12(z)∣2(1 − ρ2)

∣Λ11(z) + ρΛ12(z)2∣
]
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6.1 Error correction model
Let xt , yt be I(1) and ut = yt − Axt be an I(0).�e the error correction model is:

∆xt = λ1ut−1 + a1(B)∆xt−1 + b1(B)∆yt−1 + ext

∆yt = λ2ut−1 + a2(B)∆xt−1 + b2(B)∆yt−1 + eyt

[
D(B)xt
D(B)yt

] = [
(1 − B)(1 − b2B)λ2B λ1B + b1B(1 − B)

(1 − B)a2B − λ2AB λ1AB + (1 − a1B)(1 − B)
] [

ext
eyt

]

where D(B) arises from matrix inversion.�en,

My→x(w) = log[1 +
∣λ1 + b1(1 − z)∣2(1 − ρ2)

∣{(1 − z)(z̄ − b2) − λ2} + {λ1 + b1(1 − z)}∣ρ∣2
]

where z̄ = e iw .

7 So�wares
Again, the usual disclaim applies. �ey are subjective. Your choices might be as
good as mine. See Lin(2004) for a detailed account.

1. Impulse responses: Reduced form and structural form

• VAR.SRC/RATS by Norman Morin

• SVAR.SRC/RATS by Antonio Lanzarotti and Mario Seghelini

• VAR/View/Impulse/Eviews

• FinMetrics/Splus

2. Cointegration:

• CATS/RATS

• COINT2/GAUSS

• VAR/Eviews

• urca/R

• FinMetrics/Splus
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3. Impulse response under cointegration constraint:
CATS,CATSIRFS/RATS

4. Stability analysis:

• CATS/RATS

• Eviews

• FinMetrics/Splus

8 Do and Don’t Do list

8.1 Don’t Do
1. Don’t do single equation causality testing and draw inference on the causal
direction,

2. Don’t test causality between each possible pair of variables and then draw
conclusions on the causal directions among variables,

3. Do not employ the two-step causality testing procedure though it is not an
uncommon practice.
People o�en test for cointegration �rst and then treat the error-correction
term as an independent regressor and then apply the usual causality testing.
�is procedure is �awed for the following reasons. First, EC term is esti-
mated and using it as an regressor in the next step will give rise to generated
regressor problem. �at is, the usual standard deviation in the second step
is not right. Second, there could be more than one cointegration vectors and
linear combination of them are also cointegrated vectors.

8.2 Do
1. Examine the graphs �rst. Look for pattern, mismatch of seasonality, abnor-
mality, outliers, etc.

2. Always perform diagnostic checking of residuals:
Time series modelling does not obtain help from economic theory and de-
pends heavily upon statistical aspects of correct model speci�cation. White-
ness of residuals are the key assumption.
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3. O�en graph the residuals and check for abnormality and outliers.

4. Be aware of seasonality for data not seasonally adjusted.

5. Apply the Wald test within the Johansen framework where one can test for
hypothesis on long- and short- run causality.

6. When you employ several time series methods or analyze several similar
models, be careful about the consistency among them.

7. Always watch for balance between explained and explanatory variables in
regression analysis. For example, if the dependent variable has a time-trend
but explanatory variables are limited between 0 and 1, then the regression
coe�cient can never be a �xed constant. Be careful about mixing I(0) and
I(1) variables in one equation.

8. For VAR, number of parameters grows rapidly with number of variables and
lags. Removing the insigni�cant parameters to achieve estimation e�ciency
is strongly recommended.�e resulting IR will be more accurate.

9 Empirical Examples
1. Evaluating the e�ectiveness of interest rate policy in Taiwan: an impulse re-
sponses analysis
Lin(2003a).

2. Modelling information �ow among four stock markets in China
Lin and Wu (2006).

3. Causality between export expansion andmanufacturing growth (if time per-
mits)
Liang, Chou and Lin (1995).

Reference Books:

1. Banerjee, Anindya and David F. Hendry eds. (1997), �e Econometrics of

Economic Policy, Oxford: Blackwell Publishers

2. Hamilton, James D.Time Series Analysis, New Jersey: Princeton University
Press, 1994

16



3. Clive Granger Forecasting Economic Time Series, 2nd edition Academic
Press 1986.

4. Johansen, S. (1995) Likelihood-based inference in cointegrated vector au-
toregressive models, Oxford: Oxford University Press

5. Lutkepohl, Helmut Introduction tomultiple time series analysis, 2nd ed. Springer-
Verlag, 1991.

6. Pena, D, G. Tiao, and R. Tsay, eds. A course in time series analysis, New York:
John Wiley, 2001

Reference Journal Articles:

1. Amisano, Gianni and Carlo Giannini (1997), Topics in Structural Var Econo-
metrics, 2nd ed. New York: Springer-Verlag

2. Bernanke, B. S. (1986), “Alternative explanations of the money-income cor-
relation,” Carnegie-Rochester Conference Series on Public Policy , 25, 49-100.

3. Blanchard, O. J. andD.Quah (1989) “�e dynamic e�ects of aggregate supply
and demand disturbance, “ American Economic Review, 77, 655-673.

4. Caines, P. E., C. W. Keng and S. P. Sethi (1981), ”Causality analysis and mul-
tivariate autoregressive modelling with an application to supermarket sales
analysis,” Journal of Economic Dynamics and Control 3, 267-298.

5. Dufor, J-M and E Renault (1998), ”Short run and long run causality in time
series: theory,” Econometrica, 1099-1125.

6. Gordon, R (1997), �e time varying NAIRU and its implications for eco-
nomic policy,” Journal of Economic Perspectives, 11:1, 11-32.

7. Granger, CWJ and Jin-Lung Lin, 1994, ”Causality in the long run,” w Econo-

metric�eory, 11, 530-536,

8. Phillips, P.C.B. (1998) “ImpulseResponse andForecast ErrorVarianceAsymp-
totics in Nonstationary VAR’s,” Journal of Econometrics, 83 21-56.

17



9. Liang, K.Y,W.wen-linChou, and Jin-LungLin (1995), ”Causality between ex-
port expansion and manufacturing growth: further evidence from Taiwan,”
manuscript

10. Lin, Jin-Lung, (2003), ”An investigation of the transmission mechanism of
interest rate policy in Taiwan,” Quarterly Review, Central Bank of China, 25,
(1), 5-47. (in Chinese).

11. Lin,Jin-Lung (2004), ”A quick review on Econometric/Statistics so�wares,”
manuscript.

12. 1. Lin, Jin-Lung andChung ShuWu (2006), ”ModelingChina’s stockmarkets
and international linkages,” Journal of the Chinese Statistical Association, 44,
1-32.

13. Swanson, N. and C.W. J. Granger (1997), “Impulse response functions based
on the causal approach to residual orthogonalization in vector autoregres-
sions,” Journal of the American Statistical Association, 92, 357-367.

14. Lutkepohl, H (1993), ”Testing for causation between two variables in higher
dimensionalVARmodels,” Studies inApplied Econometrics, ed. byH. Schneeweiss
and K. Zimmerman. Heidelberg:Springer-Verlag.

15. Toda, Hiro Y.; Yamamoto, Taku, “Statistical inference in vector autoregres-
sions with possibly integrated processes,” Journal of Econometrics 66, 1-2,
March 4, 1995, pp. 225-250.

16. Yamada, Hiroshi; Toda, Hiro Y. “Inference in possibly integrated vector au-
toregressive models: some �nite sample evidence,” Journal of Econometrics

86, 1, June

18


