

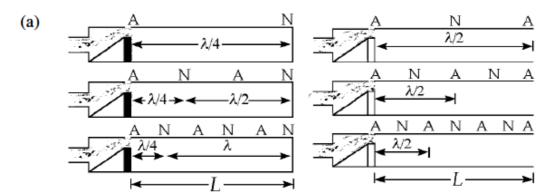
Department of Physics National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, 974, Taiwan General Physics I, Quiz 5 PHYS10400, Class year 99 12-23-2010

SN:	, Name:
D11.	, I vallic.

Chapter 18-20, Serway; ABSOLUTELY NO CHEATING!

Please write the answers on the blank space or on the back of this paper to save resources.

1. $y = (1.50 \text{ m})\sin(0.400x)\cos(200t) = 2A_0 \sin kx \cos \omega t$


Compare corresponding parts:

(a)
$$k = \frac{2\pi}{\lambda} = 0.400 \text{ rad/m}$$
 $\lambda = \frac{2\pi}{0.400 \text{ rad/m}} = \boxed{15.7 \text{ m}}$

(b)
$$\omega = 2\pi f$$
 so $f = \frac{\omega}{2\pi} = \frac{200 \text{ rad/s}}{2\pi \text{ rad}} = \boxed{31.8 \text{ Hz}}$

(c) The speed of waves in the medium is $v = \lambda f = \frac{\lambda}{2\pi} 2\pi k f = \frac{\omega}{k} = \frac{200 \text{ rad/s}}{0.400 \text{ rad/m}} = \boxed{500 \text{ m/s}}$

2.

ANS FIG. P18.35

The wavelength is $\lambda = \frac{v}{f} = \frac{343 \text{ m/s}}{261.6/\text{s}} = 1.31 \text{ m}$

so the length of the open pipe vibrating in its simplest (A-N-A) mode is

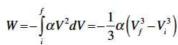
$$d_{\text{A to A}} = \frac{1}{2} \lambda = \boxed{0.656 \text{ m}}$$

(b) A closed pipe has (N-A) for its simplest resonance, (N-A-N-A) for the second, and (N-A-N-A) for the third, equal to 5/4 wavelengths.

Here, the pipe length is $5d_{\text{N to A}} = \frac{5\lambda}{4} = \frac{5}{4} (1.31 \text{ m}) = \boxed{1.64 \text{ m}}$

3.

(a) PV = nRT


$$n = \frac{PV}{RT} = \frac{(1.013 \times 10^5 \text{ Pa})(1.00 \text{ m}^3)}{(8.314 \text{ J/mol} \cdot \text{K})(293 \text{ K})} = \boxed{41.6 \text{ mol}}$$

- (b) m = nM = (41.6 mol)(28.9 g/mol) = 1.20 kg
- (c) This value agrees with the tabulated density of 1.20 kg/m^3 at 20.0°C .

4

$$W = -\int_{0}^{f} PdV$$

The work done on the gas is the negative of the area under the curve $P=\alpha V^2$ between V_i and V_f .

$$V_f = 2V_i = 2(1.00 \text{ m}^3) = 2.00 \text{ m}^3$$

 $P = \alpha V^{2}$ 01.00 m³ 2.00 m³

ANS FIG. P20.23

$$W = -\frac{1}{3} \left[\left(5.00 \text{ atm/m}^6 \right) \left(1.013 \times 10^5 \text{ Pa/atm} \right) \right] \left[\left(2.00 \text{ m}^3 \right)^3 - \left(1.00 \text{ m}^3 \right)^3 \right] = \boxed{-1.18 \text{ MJ}}$$