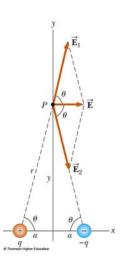


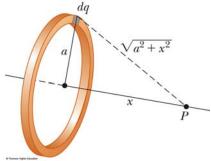
Department of Physics National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, 974, Taiwan General Physics II, Midterm 3 PHYS10400, Class year 98 04-01-2010

SN:	, Name:	

ABSOLUTELY NO CHEATING!


Problems (5 Problems, total 130%)

1. Carnot Engine: (total 20%) Refer to the figure on the right for the P-V diagram of a typical Carnot Engine. The heat (energy) absorbed in the isothermal expansion at temperature T_h is Q_h, and the isothermal compression at temperature T_c gives up heat (energy) Q_c. (a) (10%) what is the efficiency (e) of the Carnot engine in terms of the temperature T_h and T_c? (b) (5%) What is the requirement to have a perfect efficiency, i.e. e=1? (c) (5%)


 Q_h B $W_{\rm eng}$ T_h C T_e V

Why it is not possible to have an ideal engine (e=1) in reality? Assume, the Carnot Engine operates with ideal gas and the PV relationship for the ideal gas is $PV^{\gamma} = cons \tan t$, where $\gamma = C_p/C_v$.

- 2. Entropy: (20%) (a) What is the meaning of entropy? (b) What is the thermodynamics definition of entropy? (c) What is the entropy change ΔS in a Carnot Engine (using the above diagram)? (d) What is the total entropy change in a free expansion? Suppose initially the gas was confined in a volume of V_i , and is allowed to free expand to a total volume of V_f in an adiabatic, and insulting condition.
- 3. Electric field due to a dipole: (20%) As shown in the figure to the right, in a special case, where we have two charges q that are opposite in sign. In this case, we have an electric dipole separated by a distance 2a. If y axis is sitting at the center of the line joining the two charges and perpendicular to the x-axis. (a) What is the total electric field, due to this electric dipole at a point P on the y axis at a distance y to the center? To give you a hint, in the figure, we will have E₁=E₂, and the E should be parallel to the x axis. (b) What is the total electric field when y>>a?

- 4. **Gauss law:** (20%) (a) What is Gauss Law in electricity? (b) Use Gauss law to derive the electric field at a distance r away from a point charge Q?
- 5. Electric Potential: (10%) What is the electric potential at a point P located at a distance x from the center of the charged ring as illustrated in the figure in the right? Assume the total charge of the ring is Q.

6. <u>Capacitor of Parallel plates:</u> (10%) What is the capacitor of two large parallel plates (area **A**) separated by a distance **d**, each has +Q ans –Q respectively? The surface charge density of each plate is σ.