## General Physics I, Midterm Exam 1 solution

1. (a) The hawk's centripetal acceleration is

$$
a_{c}=\frac{v^{2}}{r}=\frac{(4.00 \mathrm{~m} / \mathrm{s})^{2}}{12.0 \mathrm{~m}}=1.33 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The magnitude of the acceleration vector is

$$
\begin{aligned}
a & =\sqrt{a_{c}^{2}+a_{t}^{2}} \\
& =\sqrt{\left(1.33 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(1.20 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=1.79 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$


at an angle

$$
\theta=\tan ^{-1}\left(\frac{a_{c}}{a_{t}}\right)=\tan ^{-1}\left(\frac{1.33 \mathrm{~m} / \mathrm{s}^{2}}{1.20 \mathrm{~m} / \mathrm{s}^{2}}\right)=48.0^{\circ} \text { inward }
$$

2. 

This problem is from Page 201 (Example 7.9) of text book.
(a) The separation of two atoms is where the potential is in its minimum. To find the minimum, we set $\frac{d U(x)}{d x}=4 \varepsilon \frac{d}{d x}\left[\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right]=4 \varepsilon\left[\frac{-12 \sigma^{12}}{x^{13}}+\frac{6 \sigma^{6}}{x^{7}}\right]=0$
$\frac{d U(x)}{d x}=4 \varepsilon \frac{d}{d x}\left[\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right]=4 \varepsilon\left[\frac{-12 \sigma^{12}}{x^{13}}+\frac{6 \sigma^{6}}{x^{7}}\right]=0, \quad x=(2)^{\frac{1}{6}} \sigma$
(b) Plug in numbers given, $\mathrm{x}=2.95 \times 10^{-10} \mathrm{~m}$
(c) The potential energy curve is shown in page 189 of the text book.
(d) When $\mathrm{x}=4.5 \times 10^{-10} \mathrm{~m}$, the two atoms are subject to a restoration form to bring them together to the equilibrium point ( $\mathrm{x}=2.95 \times 10^{-10} \mathrm{~m}$ )
(e) This can be proved by taking the first derivative of the potential, $\frac{d U}{d x}>0$, this is the force of the two atoms at that point, so it is a restoration force to bring them together.
3. Parallel axis theorem

$$
\begin{aligned}
& I=I_{C M}+M D^{2} \\
& I=\int r^{2} d m \\
& =\int\left(x^{2}+y^{2}\right) d m
\end{aligned}
$$

But


$$
\begin{aligned}
& \begin{aligned}
\therefore I & =\int\left[\left(x^{\prime}+x_{c M}\right)^{2}+\left(y^{\prime}+y_{c m}\right)^{2}\right] d m \\
& =\int\left(x^{\prime 2}+2 x^{\prime} c_{c m}+x_{c m}^{2}+y^{2}+2 y^{\prime} y_{c m}+y_{c m}^{2} d m\right.
\end{aligned} \\
& =\underbrace{\int\left(x^{\prime}+y^{\prime 2}\right) d m}_{I_{C M}}+\underbrace{2 x_{c M} \int x^{\prime} d m}_{=0}+\underbrace{2 y_{c m} \int y^{\prime} d m}_{=0}+\underbrace{\left(x_{c m}^{2}+y_{c m}^{2}\right) \int d m}_{D^{2} M}
\end{aligned}
$$

$$
\therefore \quad I=I_{C M}+M D^{2}
$$

- Parallel axis theorem

4. 
1) Perfect inelastic collision

$$
\begin{array}{r}
m_{1} v_{1 i}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f} \\
v_{f}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}}{m_{1}+m_{2}}
\end{array}
$$

5. 

$r$

$$
\begin{aligned}
W_{\text {on book }} & =(m g) \cdot \Delta r \\
& =\left(-m g \hat{j} \cdot\left[\left(y_{a}-y_{a}\right) \hat{j}\right]\right. \\
& =m g y_{b}-m g y_{a} \\
& =\Delta E_{K} \\
& =\Delta K_{\text {book }}
\end{aligned}
$$

$$
\begin{aligned}
& m g y_{b}-m g y_{a}=-\left(m g y_{a}-m g y_{b}\right) \\
&=-\left(u_{f}-u_{i}\right) \\
&=-\Delta u_{g} \\
& \therefore \Delta k=-\Delta u_{g} \\
& \Delta k+\Delta u_{g}=0
\end{aligned}
$$

