Department of Physics
National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, 974, Taiwan

General Physics I, Final 2

PHYS10000AA, AB, AC, Class year 108
\qquad , Name: \qquad

ABSOLUTELY NO CHEATING!

Note: This is a close-book examine. You can use pencil or any pen in answering the problems. Dictionary and Calculators are allowed.

Problems (5 Problems, total 120\%)

1. AC source: (30\%) Refer to the figure to the right. Consider a very simple AC circuit, the AC source of voltage can be expressed as $\Delta \mathrm{V}(\mathrm{t})=\Delta \mathrm{V}_{\max } \operatorname{Sin} \omega \mathrm{t}$, and only a resistor with resistance \boldsymbol{R} is connected in the circuit. (a)What is the maximum current that can be passed through the resistor? (b) Is there any phase change between the voltage source and the current? (c) What is the power generated by the resistor as a function of time? (d) What is the average (root mean square) power generated by the resistor?

2. Maxwell equations: (20\%) Write down the four Maxwell's equations, and briefly explain what each equation means.
3. Maxwell equations: (20\%) Consider an EM wave traveling in the x -axis direction as shown in the figure to the right. This describes the orthogonal relation of the oscillating Electricity (E) and magnetic (B) fields when the EM wave is traveling.
 Based on the figure, derive the follow relation between the \boldsymbol{E} (x, t) and $\boldsymbol{B}(\mathrm{x}, \mathrm{t})$ fields is: $\frac{\partial \mathrm{E}(\mathrm{x}, \mathrm{t})}{\partial \mathrm{x}}=-\frac{\partial \boldsymbol{B}(x, t)}{\partial t}$
4. EM wave energy: (30\%) The rate of flow of energy in an EM wave is defined as $\boldsymbol{S} \equiv \frac{1}{\mu_{0}} \boldsymbol{E} \times \boldsymbol{B}$, where $\boldsymbol{S}, \boldsymbol{E}, \boldsymbol{B}$ are all vectors, and \boldsymbol{S} is named Poynting vector, it has unit $\mathrm{W} / \mathrm{m}^{2}$, is the rate of flow of energy through a surface area. (a) What is the instantaneous rate of energy in a plane wave that energy is
 passing through a unit area? (b) What is the time average of \boldsymbol{S}, which is called the intensity of the EM wave \boldsymbol{I} ?
5. Extra credit: Single slit diffraction: (20\%) A parallel beam of blue light (wavelength 420 nm) is incident on a small aperture. After passing through the aperture, the beam is no longer parallel but diverges at 1° to the incident direction. What is the diameter of the aperture? Note: for small angle $\boldsymbol{\theta}, \sin \theta \cong \theta$. (15\%).
$1 /$
(a) $\Delta V(t)=\Delta V_{\text {max }} \sin \omega t$

Refer to the figure to the night, the Voltage across the resistor is the same as that of the Source,

$$
\begin{aligned}
\therefore \Delta V & =\Delta V_{R}=\Delta V_{\text {max }} \sin \omega T \\
i_{R}=\frac{\Delta \sqrt{R}}{R} & =\frac{\Delta V_{\text {max }} \sin \omega t \quad I_{\text {max }}}{R}=\frac{\Delta V_{\text {max }}}{R}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \Delta V(t)=\Delta V_{\text {max }} \sin \omega t \\
& \Delta V_{R}=\Delta V_{\text {max }} \sin \omega t \\
& i_{R}=\frac{\Delta V_{\text {mad }}}{R} \sin \omega t
\end{aligned}
$$

(c)

$$
\begin{aligned}
P & =i^{2} R \\
& =\left(\frac{\Delta V_{m a x}}{R} \sin w t\right)^{2} R=\frac{\Delta V_{\text {max }}^{2}}{R} \sin ^{2} w t
\end{aligned}
$$

(d)

$$
\begin{aligned}
I_{r m s} & =\sqrt{\bar{i}^{2}} \\
i^{2} & =I_{\max }^{2} \sin ^{2} \omega \pi \\
\overline{i^{2}} & =\frac{1}{T} \int_{0}^{T} I_{\max }^{2} \sin ^{2} \omega \pi d t=\frac{I_{m x}^{2}}{T} \int_{0}^{T} \sin ^{2} \omega t d t \\
& =T_{\max }^{2} \frac{1}{T} \int_{0}^{T}\left[\frac{\left.1-\frac{\sin \frac{\omega t}{2}}{2}\right] d t}{}\right. \\
& =I_{\max }^{2} \frac{1}{2}-\frac{1}{T} \int \frac{\sin ^{\frac{\omega t}{2}}}{2} d t \\
& =I_{\text {max }}^{2} \quad \therefore I_{r m s}=\sqrt{\hat{i^{2}}}=\frac{1}{2} I_{\text {max }}^{2}
\end{aligned}
$$

2
Manuel's equations

1. $\oint \vec{E} \cdot d \vec{A}=\frac{q}{t_{0}}$ - you constraalaulate the electric field

Gauss law. Electricity
2. $\oint B \cdot d A=0$
gauss law magnetism
$3 \oint E \cdot d s=-\frac{d \phi_{B}}{d t}$ Faraday's law enclosed ing a Gaussian ald the enclosed charge determines tu field. this imply the possibility to isolate. a single charge (positive or negative)

- thin implies it is not possible to isolate a single pole of the magnet.
the possibility to create an Efreld by a changing magnetic flux. this connects Electricity and magnetism.
$4 \oint B \cdot d S=\mu_{0} I+\mu_{0} t_{0} \frac{d \Phi_{E}}{d t}$
Ampere - Maxwell
law
- This determines the Source of magnetic can be moving charge, or changing Electric flux ore time. and changing Electric flax is a sort of Current called displacement current:

3 Use Faraday's law $\oint_{E \cdot d}=-\frac{d \Phi_{B}}{d t}$ E field is perpendicalar to $d \vec{s}$.

$$
\begin{aligned}
E(x+d x) & \approx E(x)+\left.\frac{d E}{d x}\right|_{t=\text { const }} d x=E_{x)}+\frac{\partial E}{\partial x} d x \\
\therefore \oint \vec{E} \cdot d S & =\left[E(x)+\frac{\partial E}{\partial x} d x\right] l-[E(x)] l \\
& \approx l\left(\frac{\partial E}{\partial x}\right) d x \\
\Phi_{B} & =B l d x \\
\frac{d \Phi_{B}}{d t} & =\left.l d x \frac{d B}{d t}\right|_{x=\text { const }}=l d x \frac{\partial B}{\partial t}
\end{aligned}
$$

From Faraday's law $\oint \vec{E} \cdot d \vec{s}=-\frac{d \phi_{B}}{d t}$

$$
\begin{aligned}
\therefore \ell\left(\frac{\partial E}{\partial x}\right) d x & =-\ell d x \frac{\partial B}{\partial t} \\
\frac{\partial E}{\partial x} & =-\frac{\partial B}{\partial t}
\end{aligned}
$$

4 (a)
Since we are Considering a plane wave, the \vec{E} and \vec{B}
i, fields ae perpendicalan to eachother

$$
\begin{aligned}
& \vec{E} \times \vec{B}=|E B|=E B \\
S= & \frac{1}{\mu_{0}} \vec{E} \times \vec{B} \cdot \text { But } \frac{E}{B}=c, \\
\therefore \quad & S=\frac{E^{2}}{\mu_{0} c}=\frac{c B^{2}}{\mu_{0}} \text { - Instantaneo }
\end{aligned}
$$

- Instantaneous slate of ency that is passing a unit area with Instantaneous Values of \vec{B} an \vec{E}
(b) To get the tine averged $\overrightarrow{S_{s}}$; we need to recall the in an EM wave, it is composed Both Electric part $\left(E(x, t)=E_{\text {max }} \sin (k x-\omega t)\right]$ and magnetic part
$\left[B(x, t)=B_{\text {max }} \sin (k x-\omega t)\right]$ (or you can use $\left.\cos (t x-\omega t)\right]$
and we need to get the time average, that is

$$
\begin{aligned}
& \therefore I=S_{a v}=\text { he rms of } \vec{S} \\
&=S_{r m s} \\
&=\frac{1}{T} \int^{T} S d t \\
&=\frac{1}{T} \int_{0}^{T \mu_{0}} E_{\text {max }}^{2} \cos ^{2}(h t-\omega t)=\frac{E_{\text {max }}^{2}}{2 \mu \mu_{0}} \\
& o r=\frac{1}{T} \frac{c}{\mu_{0}} \int_{b}^{T} B_{\text {max }}^{2} \cdot \cos ^{2}(k x-\omega t)=\frac{c}{2 u_{0}} B_{\text {max }}^{2}
\end{aligned}
$$

screen
The size on the screen of the aperture is the consequence of the diffraction. Front the center to the first minimum is the Observed Size of the apenature,

The first minimum appears@

$$
d \sin \theta=n \lambda \text {, when } n=1 \text {, and } \theta=\theta=1^{\circ}
$$

When angle is simale, $\sin \theta>\theta=2^{\circ}=\frac{\pi}{180}$

$$
\begin{aligned}
& \therefore d\left(\frac{\pi}{180}\right)=1.420 \mathrm{~nm} \quad \text { To ac } \\
&=420 \times 10^{-9} \mathrm{~m} \quad \text { of } \\
& \therefore d=\frac{420 \times 10^{-19}}{\frac{\pi}{180}}=24 \mu \mathrm{~m} \\
& \text { or } 24 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

To account both sides of the image

