St．ID： \qquad ，

Name： \qquad

Chapter 11

1．A uniform solid sphere of radius $r=0.500 \mathrm{~m}$ and mass $m=15.0 \mathrm{~kg}$ turns counter clockwise about a vertical axis through its centre．Find its vector angular momentum about this axis when its angular speed is $3.00 \mathrm{rad} / \mathrm{s}$ ．

Ans：

2．The angular momentum vector of a precessing gyroscope sweeps out a cone as shown in Figure P11．31．The angular speed of the tip of the angular momentum vector，called its precessional frequency，is given by $\omega_{p}=\tau / L$ ， where τ is the magnitude of the torque on the gyroscope and L is the magnitude of its angular momentum．In the motion called precession of the equinoxes，the Earth＇s axis of rotation precesses about the perpendicular to its
orbital plane with a period of $2.58 \times 10^{4} \mathrm{yr}$. Model the Earth as a uniform sphere and calculate the torque on the Earth that is causing this precession.

Figure P11.31 A precessing angular momentum vector sweeps out a cone in space.
Ans:

