## Solutions

## ABSOLUTELY NO CHEATING！

Note：This is a close－book examine．You can use pencil or any pen in answering the problems．Dictionary and Calculators are allowed．

## Problems（6 Problems，total 100\％）

1．Spring system：（15\％）Two springs with identical force constant $\boldsymbol{k}$ are connected as shown in the figure to the right．Prove that the frequency of the oscillation on the frictionless

$$
f=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}} .
$$

surface is，

$$
f=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}
$$

2．Conservation of energy：（20\％）The gravitational force between two particles with masses $\boldsymbol{m}$ and $\boldsymbol{M}$ ，initially at great separation，pulls them together．What is the speed of either particle relative to the other，when $\boldsymbol{d}$ is the separation at that instant？（10\％）
3．Gravitation：（15\％）The magnitude of the gravitational force between a particle of mass $\boldsymbol{m}_{1}$ and one of mass $\boldsymbol{m}_{2}$ is given by $F(x)=G \frac{m_{1} m_{2}}{X^{2}}$ ，where $G$ is a constant，and $x$ is the distance between two particles．
（a）What is the corresponding potential energy function $U(x)$ ？（5\％）
（b）How much work is required to increase the separation of the particles from $x=x_{1}$ to $x=x_{1}+d$ ？（5\％）
4．Doppler effect：（15\％）If a sound wave has a speed $\boldsymbol{v}$ and frequency $f$ ．What is the detected frequency when the source is moving at speed $v_{s}$ towards the detector and the detector is stationary？（10\％）Derive this．
5．Wave equation：（20\％）Suppose you set up a traveling wave in a string．Refer to the figure to the right，if you focused on this section of the string，you can find the mass of the string is oscillating vertically（y－direction）that is it is perpendicular to the wave＇s travelling direction（say，to the right or in the +x direction）．Let the same section，suppose the vibration of the string can be represented as a function $\boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t}$ ）；a function of both $\boldsymbol{x}$ and $\boldsymbol{t}$ ；and let the line
 density of the string be $\boldsymbol{\mu}$ ，and $\boldsymbol{T}$ is the tension of the string．Prove that the wave equation describing this wave motion is $\frac{\mu}{T} \frac{\partial^{2} y(x, t)}{\partial t^{2}}=\frac{\partial^{2} y(x, t)}{\partial x^{2}}$.

6．Escape Speed of a Rock：（15\％）Superman picks up a 20 Kg rock and throws it into the space．What minimum speed must it have at the Earth＇s surface to move infinitely far away from the Earth？

1. Consider a displacement of mass $m$, for example $x$ to the right. The force for mass \#1
 spring is $-k x$, for mass by $\$ 2$ spring is also $-k_{x}$

$$
\begin{aligned}
\therefore f_{\text {total }} & =-k_{x}-k x=-2 k x=-k_{\text {eff }} x \\
& \therefore k_{\text {eff }}=2 k
\end{aligned}
$$

$$
\text { Therefore } f=\frac{1}{2 \pi} \sqrt{\frac{k_{z+t}}{m}}=\frac{1}{2 \pi} \sqrt{\frac{2 h}{m}}
$$

2,
For the two -mass system

$$
\begin{align*}
& \frac{1}{2} M \nabla^{2}+\frac{1}{2} m v^{2}+-\frac{G M m}{d}=0 \\
& \text { or } \frac{1}{2} M \nabla^{2}+\frac{1}{2} m v^{2}=\frac{G M m}{d}-1
\end{align*}
$$

From Conservation of linear momentum $M \nabla=m V=P$

$$
\begin{aligned}
& \therefore \text { (1) } \Rightarrow \frac{P^{2}}{2 M}+\frac{P^{2}}{2 m}=\frac{G M m}{d} \Rightarrow P=\sqrt{\frac{2 G M^{2} m^{2}}{d(M+m)}} \\
& \text { Therefore } V_{\text {relative }}=V+V=\frac{P}{M}+\frac{P}{m} \\
&=\sqrt{\frac{2 G(M+m)}{d}}
\end{aligned}
$$

3

$$
U(x)=-\int f(x) d x
$$

(a) $U(x)=-\int F(x) d x=-\int_{x}^{\infty} G \frac{m_{1} m_{2}}{x^{2}} d x=-\frac{G m_{1} m_{2}}{x}$
(b)

$$
\begin{aligned}
W & =U\left(x_{1}+d\right)-U\left(x_{1}\right)=-\frac{G m_{1} m_{2}}{x_{1}+d}-\left(-\frac{G m_{1} m_{2}}{x_{1}}\right) \\
& =\frac{G m_{1} m_{2} d}{x_{1}\left(x_{1}+d\right)}
\end{aligned}
$$

4

$$
s \rightarrow 1)) \rightarrow v
$$

- Detector

When Source moves towards he detector@ speed Vs, Wave front moves VT during a period of time $T$, The source moves $V_{s} T$ during the same tine period of $T$, (u the distance between $W_{1}$ and $W_{2}$ is the detected $\lambda^{\prime}$ for the detector.

$$
\begin{aligned}
\lambda^{\prime} & =v T-V_{s} T \\
\therefore \quad f^{\prime} & =\frac{v}{\lambda^{\prime}}=\frac{V}{V T-V_{s} T}=\frac{v}{\frac{v}{f}-\frac{V_{s}}{f}}=f \frac{v}{V-V_{s}}
\end{aligned}
$$

Use te figure to tue rights The total force $F_{y}$ is

$$
-{\overline{\theta_{A}}}_{A_{L}} \nabla_{A}-
$$

$$
\begin{array}{rlr}
\sum F_{y} & =T \sin \theta_{B}-T \sin \theta_{A} & \\
& =T\left(\sin \theta_{B}-\sin \theta_{A}\right) & \text { for siallangle } \\
& \fallingdotseq T\left(\operatorname{tanan}_{B}-\tan _{a} \theta_{A}\right) & \sin \approx \tan \theta \\
& =T\left(\left.\frac{\partial y}{\partial x}\right|_{a A_{B}}-\left.\frac{\partial y}{\partial x}\right|_{a_{A}}\right)=m a_{y}=\mu \Delta x\left(\frac{\partial^{2} y}{\partial t^{2}}\right)
\end{array}
$$

Assume line density $\mu$
$\therefore \mu \Delta x\left(\frac{\partial^{2} y}{\partial x^{2}}\right)=T\left(\left(\frac{\partial y}{\partial x}\right)_{B}-\left(\frac{\partial y}{\partial x^{2}}\right)_{A}\right)$
or $\frac{\mu}{T} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\left(\frac{\partial y}{\partial x}\right)_{B}-\left(\frac{\partial y}{\partial x}\right)_{A}}{\Delta x}=\frac{\partial^{2} y}{\partial x^{2}}$
Therefore $\frac{\mu}{T} \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}$ on $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v} \frac{\partial^{2} y}{\partial t^{2}}$
is the wave equation describing a wave traveling in the String
6. In an Earth-object system, the conservation of energy gives $\frac{1}{2} m V_{i}^{2}-\frac{G M_{E} m}{r_{i}}=\frac{1}{2} m V_{f}^{2}-\frac{G M m}{r_{f}} \quad ; r_{i}=R_{E}, r_{f}=r_{\text {max }}$ for tu rock to escape the earth, $v_{f}=0$,

$$
\therefore \frac{1}{2} m V_{i}^{2}-\frac{G M_{E} m}{R_{E}}=-\frac{G M_{E} m}{r_{\text {max }}}: T_{0} \text { escape, } r_{\text {max }} \rightarrow \infty
$$

$$
\therefore \frac{1}{2} m V_{\text {except }}^{2}=\frac{G M_{E} m}{R_{E}}, D V_{\text {escape }}=\sqrt{\frac{2 G M_{E}}{R_{E}}}
$$

$$
\text { roughly } V_{\text {est }}=1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

