Department of Physics
National Dong Hwa University，1，Sec．2，
Da Hsueh Rd．，Shou－Feng，Hualien，974，Taiwan

General Physics I，Final 1

PHYS10000AA，AB，AC，Class year 107
01－08－2019

SN：

\qquad ，Name： \qquad

ABSOLUTELY NO CHEATING！

Note：This is a close－book examine．You can use pencil or any pen in answering the problems．Dictionary and Calculators are allowed．

Problems（6 Problems，total 100\％）

1．Spring system：（15\％）Two springs with identical force constant \boldsymbol{k} are connected as shown in the figure to the right．Prove that the frequency of the oscillation on the frictionless

$$
f=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}} .
$$ surface is，

$$
f=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}
$$

2．Conservation of energy：（20\％）The gravitational force between two particles with masses \boldsymbol{m} and \boldsymbol{M} ，initially at great separation，pulls them together．What is the speed of either particle relative to the other，when \boldsymbol{d} is the separation at that instant？
3．Gravitation：（15\％）The magnitude of the gravitational force between a particle of mass $\boldsymbol{m}_{\mathbf{1}}$ and one of mass $\boldsymbol{m}_{\mathbf{2}}$ is given by $F(x)=G \frac{m_{1} m_{2}}{x^{2}}$ ，where G is a constant，and x is the distance between two particles．
（a）What is the corresponding potential energy function $U(x)$ ？（5\％）
（b）How much work is required to increase the separation of the particles from $x=x_{1}$ to $x=x_{1}+d$ ？（10\％）
4．Doppler effect：（15\％）If a sound wave has a speed \boldsymbol{v} and frequency \boldsymbol{f} ．What is the detected frequency when the source is moving at speed v_{s} towards the detector and the detector is stationary？Derive this．
5．Wave equation：（20\％）Suppose you set up a traveling wave in a string．Refer to the figure to the right，if you focused on this section of the string，you can find the mass of the string is oscillating vertically（y－direction）that is it is perpendicular to the wave＇s travelling direction（say，to the right or in the $+x$ direction）．Let the same section，suppose the vibration of the string can be represented as a function $\boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t})$ ；a function of both \boldsymbol{x} and \boldsymbol{t} ；and let the line
 density of the string be $\boldsymbol{\mu}$ ，and \boldsymbol{T} is the tension of the string．Prove that the wave equation describing this wave motion is
$\frac{\mu}{T} \frac{\partial^{2} y(x, t)}{\partial t^{2}}=\frac{\partial^{2} y(x, t)}{\partial x^{2}}$ ．
6．Escape Speed of a Rock：（15\％）Superman picks up a 20 Kg rock and throws it into the space．What minimum speed must it have at the Earth＇s surface to move infinitely far away from the Earth？

