Chapter 19.

1. In a student experiment, a constant-volume gas thermometer is calibrated in dry ice $\left(-78.5^{\circ} \mathrm{C}\right)$ and in boiling ethyl alcohol $\left(78.0^{\circ} \mathrm{C}\right)$. The separate pressures are 0.900 atm and 1.635 atm . (a) What value of absolute zero in degrees Celsius does the calibration yield? What pressures would be found at (b) the freezing and (c) the boiling points of water? Hint: Use the linear relationship $P=A+B T$, where A and B are constants.
Ans:
Since we have a linear graph, we know that the pressure is related to the temperature as $P=$ $A+B T_{C}$, where A and B are constants. To find A and B, we use the given data:

$$
0.900 \mathrm{~atm}=A+B\left(-78.5^{\circ} \mathrm{C}\right)
$$

And

$$
1.635 \mathrm{~atm}=A+B\left(78.0^{\circ} \mathrm{C}\right)
$$

Solving Equations [1] and [2] simultaneously, we find:

$$
A=1.27 \mathrm{~atm} \text { and } B=4.70 \times 10^{-3} \mathrm{~atm} /{ }^{\circ} \mathrm{C}
$$

Therefore,

$$
P=1.27 \mathrm{~atm}+\left(4.70 \times 10^{-3} \mathrm{~atm} /{ }^{\circ} \mathrm{C}\right) T_{C}
$$

(a) At absolute zero the gas exerts zero pressure $(P=0)$, so

$$
T_{C}=\frac{-1.27 \mathrm{~atm}}{4.70 \times 10^{-3} \mathrm{~atm} /{ }^{\circ} \mathrm{C}}=-270^{\circ} \mathrm{C}
$$

(b) At the freezing point of water, $T_{C}=0$ and

$$
P=1.27 \mathrm{~atm}+0=1.27 \mathrm{~atm}
$$

At the boiling point of water, $T C=100^{\circ} \mathrm{C}$, so

$$
P=1.27 \mathrm{~atm}+\left(4.70 \times 10^{-3} \mathrm{~atm} /{ }^{\circ} \mathrm{C}\right)\left(100^{\circ} \mathrm{C}\right)=1.74 \mathrm{~atm}
$$

2. A copper telephone wire has essentially no sag between poles 35.0 m apart on a winter day when the temperature is $-20.0^{\circ} \mathrm{C}$. How much longer is the wire on a summer day when the temperature is $35.0^{\circ} \mathrm{C}$?
Ans:
The wire is 35.0 m long when $T_{C}=-20.0^{\circ} \mathrm{C}$.

$$
\Delta L=L_{i} \bar{\alpha}\left(T-T_{i}\right)
$$

Since for $\bar{\alpha}=\alpha\left(20.0^{\circ} \mathrm{C}\right)=1.70 \times 10^{-5}\left({ }^{\circ} \mathrm{C}\right)^{-1} \mathrm{Cu}$,

$$
\Delta L=(35.0 \mathrm{~m})\left[1.70 \times 10^{-5}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right]\left[35.0^{\circ} \mathrm{C}-\left(-20.0^{\circ} \mathrm{C}\right)\right]=+3.27 \mathrm{~cm}
$$

3. A sample of lead has a mass of 20.0 kg and a density of $11.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ at $0^{\circ} \mathrm{C}$. (a) What is the density of lead at $90.0^{\circ} \mathrm{C}$? (b) What is the mass of the sample of lead at $90.0^{\circ} \mathrm{C}$?
Ans:
(a) The density of a sample of lead of mass $m=20.0 \mathrm{~kg}$, volume V_{0}, at temperature T_{0} is

$$
\rho_{0}=\frac{m}{V_{0}}=11.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

For a temperature change $\Delta T=T-T_{0}$, the same mass m occupies a larger volume
$V=V_{0}(1+\beta \Delta T)$; therefore, the density is

$$
\rho=\frac{m}{V_{0}(1+\beta \Delta T)}=\frac{\rho}{(1+\beta \Delta T)}
$$

where $\beta=3 \alpha$, and $\alpha=29 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$.
For a temperature change of from $0.00^{\circ} \mathrm{C}$ to $90.0^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\rho & =\frac{\rho_{0}}{(1+\beta \Delta T)}=\frac{11.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{1+3\left(29 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right)\left(90.0^{\circ} \mathrm{C}\right)} \\
& =11.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

(b) The mass is still the same, 20.0 kg , because a temperature change would not change the mass.
4. A container in the shape of a cube 10.0 cm on each edge contains air (with equivalent molar mass $28.9 \mathrm{~g} / \mathrm{mol}$) at atmospheric pressure and temperature 300 K . Find (a) the mass of the gas, (b) the gravitational force exerted on it, and (c) the force it exerts on each face of the cube. (d) Why does such a small sample exert such a great force?
Ans:
(a) From $P V=n R T$, we obtain $n=\frac{P V}{R T}$ Then

$$
\begin{aligned}
m & =n M=\frac{P V M}{R T} \\
& =\frac{\left(1.013 \times 10^{5} \mathrm{~Pa}\right)(0.100 \mathrm{~m})^{3}\left(28.9 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)}{(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})} \\
& =1.17 \times 10^{-3} \mathrm{~kg}
\end{aligned}
$$

(b) $F_{g}=m g=\left(1.17 \times 10^{-3} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=11.5 \mathrm{mN}$
(c) $F=P A=\left(1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)(0.100 \mathrm{~m})^{2}=1.01 \mathrm{kN}$
(d) The molecules must be moving very fast to hit the walls hard.
5. A popular brand of cola contains 6.50 g of carbon dioxide dissolved in 1.00 L of soft drink. If the evaporating carbon dioxide is trapped in a cylinder at 1.00 atm and $20.0^{\circ} \mathrm{C}$, what volume does the gas occupy?
Ans:
The CO_{2} is far from liquefaction, so after it comes out of solution it behaves as an ideal gas. Its molar mass is $M=12.0 \mathrm{~g} / \mathrm{mol}+2(16.0 \mathrm{~g} / \mathrm{mol})=44.0 \mathrm{~g} / \mathrm{mol}$. The quantity of gas in the cylinder is

$$
n=\frac{m_{\text {sample }}}{M}=\frac{6.50 \mathrm{~g}}{44.0 \mathrm{~g} / \mathrm{mol}}=0.148 \mathrm{~mol}
$$

Then $P V=n R T$ gives

$$
\begin{aligned}
V & =\frac{n R T}{P} \\
& =\frac{0.148 \mathrm{~mol}(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(273.15 \mathrm{~K}+20^{\circ} \mathrm{C}\right)}{1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}} \\
& \times\left(\frac{1 \mathrm{~N} \cdot \mathrm{~m}}{1 \mathrm{~J}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right) \\
& =3.55 \mathrm{~L}
\end{aligned}
$$

