Chapter 18.

1. A tuning fork generates sound waves with a frequency of 246 Hz . The waves travel in opposite directions along a hallway, are reflected by end walls, and return. The hallway is 47.0 m long and the tuning fork is located 14.0 m from one end. What is the phase difference between the reflected waves when they meet at the tuning fork? The speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$.
Ans:
Waves reflecting from the near end travel 28.0 m (14.0 m down and 14.0 m back), while waves reflecting from the far end travel 66.0 m . The path difference for the two waves is:

$$
\Delta r=66.0 \mathrm{~m}-28.0 \mathrm{~m}=38.0 \mathrm{~m}
$$

Since $\quad \lambda=\frac{v}{f}$
Then

$$
\frac{\Delta r}{\lambda}=\frac{(\Delta r) f}{v}=\frac{(38.0 \mathrm{~m})(246 \mathrm{~Hz})}{343 \mathrm{~m} / \mathrm{s}}=27.254
$$

or

$$
\Delta r=27.254 \lambda
$$

The phase difference between the two reflected waves is then

$$
\phi=(0.254)(1 \text { cycle })=(0.254)(2 \pi \mathrm{rad})=1.594 \mathrm{rad}=91.3^{\circ}
$$

2. Two sinusoidal waves traveling in opposite directions interfere to produce a standing wave with the wave function $y=1.50 \sin (0.400 x) \cos (200 t)$ where x and y are in meters and t is in seconds. Determine (a) the wavelength, (b) the frequency, and (c) the speed of the interfering waves. Ans:

$$
y=(1.50 \mathrm{~m}) \sin (0.400 x) \cos (200 t)=2 A_{0} \sin k x \cos \omega t
$$

Compare corresponding parts:

$$
k=\frac{2 \pi}{\lambda}=0.400 \mathrm{rad} / \mathrm{m}
$$

(a)

$$
\lambda=\frac{2 \pi}{0.400 \mathrm{rad} / \mathrm{m}}=15.7 \mathrm{~m}
$$

(b) $\omega=2 \pi f$ so $f=\frac{\omega}{2 \pi}=\frac{200 \mathrm{rad} / \mathrm{s}}{2 \pi \mathrm{rad}}=31.8 \mathrm{~Hz}$
(c) The speed of waves in the medium is

$$
v=\lambda f=\frac{\lambda}{2 \pi} 2 \pi k f=\frac{\omega}{k}=\frac{200 \mathrm{rad} / \mathrm{s}}{0.400 \mathrm{rad} / \mathrm{m}}=500 \mathrm{~m} / \mathrm{s}
$$

3. A string with a mass $m=8.00 \mathrm{~g}$ and a length $L=5.00 \mathrm{~m}$ has one end attached to a wall; the other
end is draped over a small, fixed pulley a distance $d=4.00 \mathrm{~m}$ from the wall and attached to a hanging object with a mass $M=4.00 \mathrm{~kg}$ as in Figure P18.21. If the horizontal part of the string is plucked, what is the fundamental frequency of its vibration?
Ans:
Using L_{v} for the vibrating portion of the string of total length L,

$$
\begin{aligned}
f & =\frac{v}{2 L_{v}}=\frac{1}{2 L_{v}} \sqrt{\frac{T}{\mu}}=\frac{1}{2 L_{v}} \sqrt{\frac{M g L}{m}} \\
& =\frac{1}{2(4.00 \mathrm{~m})} \sqrt{\frac{(4.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(5.00 \mathrm{~m})}{0.00800 \mathrm{~kg}}}=19.6 \mathrm{~Hz}
\end{aligned}
$$

Figure P18.21
4. Calculate the length of a pipe that has a fundamental frequency of 240 Hz assuming the pipe is
(a) closed at one end and (b) open at both ends.

Ans:
(a) For the fundamental mode in a closed pipe, $\lambda=4 L$, as in the diagram.

But $v=f \lambda$, therefore $L=\frac{v}{4 f}$.
So, $\quad L=\frac{343 \mathrm{~m} / \mathrm{s}}{4\left(240 \mathrm{~s}^{-1}\right)}=0.357 \mathrm{~m}$

(b) For an open pipe, $\lambda=2 L$, as in the diagram.

So, $\quad L=\frac{v}{2 f}=\frac{343 \mathrm{~m} / \mathrm{s}}{2\left(240 \mathrm{~s}^{-1}\right)}=0.715 \mathrm{~m}$

ANS. FIG. P18.39
5. A glass tube (open at both ends) of length L is positioned near an audio speaker of frequency $f=680 \mathrm{~Hz}$. For what values of L will the tube resonate with the speaker?

Ans:
$\frac{\lambda}{2}=d_{\mathrm{AA}}=\frac{L}{n} \quad$ or $L=\frac{n \lambda}{2} \quad$ for $n=1,2,3, \ldots$
Since $\lambda=\frac{v}{f}, L=n\left(\frac{v}{2 f}\right) \quad$ for $n=1,2,3, \ldots$
With $v=343 \mathrm{~m} / \mathrm{s}$ and $f=680 \mathrm{~Hz}$,
$L=n\left(\frac{343 \mathrm{~m} / \mathrm{s}}{2(680 \mathrm{~Hz})}\right)=n(0.252 \mathrm{~m})$ for $n=1,2,3, \ldots$
Possible lengths for resonance are: $\quad L=0.252 \mathrm{~m}, 0.504 \mathrm{~m}, 0.757 \mathrm{~m}, \ldots, n(0.252) \mathrm{m}$

