Chapter 18.

1. A tuning fork generates sound waves with a frequency of 246 Hz . The waves travel in opposite directions along a hallway, are reflected by end walls, and return. The hallway is 47.0 m long and the tuning fork is located 14.0 m from one end. What is the phase difference between the reflected waves when they meet at the tuning fork? The speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$.
Ans:
2. Two sinusoidal waves traveling in opposite directions interfere to produce a standing wave with the wave function $y=1.50 \sin (0.400 x) \cos (200 t)$ where x and y are in meters and t is in seconds. Determine (a) the wavelength, (b) the frequency, and (c) the speed of the interfering waves. Ans:
3. A string with a mass $m=8.00 \mathrm{~g}$ and a length $L=5.00 \mathrm{~m}$ has one end attached to a wall; the other end is draped over a small, fixed pulley a distance $d=4.00 \mathrm{~m}$ from the wall and attached to a hanging object with a mass $M=4.00 \mathrm{~kg}$ as in Figure P18.21. If the horizontal part of the string is plucked, what is the fundamental frequency of its vibration?
Ans:

Figure P18.21
4. Calculate the length of a pipe that has a fundamental frequency of 240 Hz assuming the pipe is (a) closed at one end and (b) open at both ends. Ans:
(a)

(b)

5. A glass tube (open at both ends) of length L is positioned near an audio speaker of frequency $f=680 \mathrm{~Hz}$. For what values of L will the tube resonate with the speaker?

Ans:

