Chapter 17.

1. An experimenter wishes to generate in air a sound wave that has a displacement amplitude of $5.50 \times 10^{-6} \mathrm{~m}$. The pressure amplitude is to be limited to 0.840 Pa . What is the minimum wavelength the sound wave can have?
Ans:

$$
\begin{aligned}
& \text { We use } \Delta P_{\max }=\rho v \omega s_{\max }=\rho v\left(\frac{2 \pi v}{\lambda}\right) s_{\max } \text { : } \\
& \quad \lambda_{\min }=\frac{2 \pi \rho v^{2} s_{\max }}{\Delta P_{\max }}=\frac{2 \pi\left(1.20 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})^{2}\left(5.50 \times 10^{-6} \mathrm{~m}\right)}{0.840 \mathrm{~Pa}}=5.81 \mathrm{~m}
\end{aligned}
$$

2. A sound wave in air has a pressure amplitude equal to $4.00 \times 10^{-3} \mathrm{~Pa}$. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz .
Ans:

$$
\begin{aligned}
& \Delta \mathrm{P}_{\max }=\rho v \omega S_{\max } \\
& S_{\max }=\frac{\Delta P_{\max }}{\rho v \omega}=\frac{4.00 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}}{\left(1.20 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})(2 \pi)\left(10.0 \times 10^{3} \mathrm{~s}^{-1}\right)} \\
&=1.55 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

3. The sound intensity at a distance of 16 m from a noisy generator is measured to be $0.25 \mathrm{~W} / \mathrm{m}^{2}$. What is the sound intensity at a distance of 28 m from the generator?
Ans:
The intensity is given by $I=\frac{P_{\text {avg }}}{4 \pi r^{2}}$.
The power is not given, but the intensity at a known distance is $I=\frac{P_{\text {avg }}}{4 \pi r^{2}}$
which gives

$$
P_{\mathrm{avg}}=I(r) 4 \pi r^{2}=4 \pi\left(0.25 \mathrm{~W} / \mathrm{m}^{2}\right)(16 \mathrm{~m})^{2}=804.2 \mathrm{~W}
$$

which can then be substituted back into the same equation:

$$
I=\frac{P_{\text {avg }}}{4 \pi r^{2}}=\frac{804.2 \mathrm{~W}}{4 \pi(28 \mathrm{~m})^{2}}=0.082 \mathrm{~W} / \mathrm{m}^{2}
$$

4. Calculate the sound level (in decibels) of a sound wave that has an intensity of $4.00 \mu \mathrm{~W} / \mathrm{m}^{2}$.

Ans:

$$
\begin{aligned}
\beta & =(10 \mathrm{~dB}) \log \left(\frac{I}{I_{0}}\right)=(10 \mathrm{~dB}) \log \left(\frac{4.00 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}}{1.00 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right) \\
& =66.0 \mathrm{~dB}
\end{aligned}
$$

5. Two small speakers emit sound waves of different frequencies equally in all directions.

Speaker A has an output of 1.00 mW , and speaker B has an output of 1.50 mW . Determine the sound level (in decibels) at point C in Figure P17.32 assuming (a) only speaker A emits sound, (b) only speaker B emits sound, and (c) both speakers emit sound.

Ans:
The speakers broadcast equally in all directions, so the intensity of sound is inversely proportional to the square of the distance from its source.

$$
\begin{aligned}
& r_{\mathrm{AC}}=\sqrt{3.00^{2}+4.00^{2}} \mathrm{~m}=5.00 \mathrm{~m} \\
& \quad I=\frac{P}{4 \pi r^{2}}=\frac{1.00 \times 10^{-3} \mathrm{~W}}{4 \pi(5.00 \mathrm{~m})^{2}}=3.18 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \beta=(10 \mathrm{~dB}) \log \left(\frac{3.18 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}}{10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right) \\
& \beta=(10 \mathrm{~dB}) 6.50=65.0 \mathrm{~dB}
\end{aligned}
$$

(b) $r_{\mathrm{BC}}=4.47 \mathrm{~m}$

Figure P17.32

$$
\begin{aligned}
& I=\frac{1.50 \times 10^{-3} \mathrm{~W}}{4 \pi(4.47 \mathrm{~m})^{2}}=5.97 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2} \\
& \beta=(10 \mathrm{~dB}) \log \left(\frac{5.97 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}}{10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right) \\
& \beta=67.8 \mathrm{~dB}
\end{aligned}
$$

(c) $I=3.18 \mu \mathrm{~W} / \mathrm{m}^{2}+5.97 \mu \mathrm{~W} / \mathrm{m}^{2}$

$$
\beta=(10 \mathrm{~dB}) \log \left(\frac{9.15 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}}{10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right)=69.6 \mathrm{~dB}
$$

