Chapter 12

1. A carpenter's square has the shape of an L as shown in Figure P12.3. Locate its center of gravity.

Ans:

The coordinates of the center of gravity of piece 1 are

$$
x_{1}=2.00 \mathrm{~cm} \text { and } y_{1}=9.00 \mathrm{~cm}
$$

The coordinates for piece 2 are

$$
x_{2}=8.00 \mathrm{~cm} \text { and } y_{2}=2.00 \mathrm{~cm}
$$

The area of each piece is

$$
A_{1}=72.0 \mathrm{~cm}^{2} \text { and } A_{2}=32.0 \mathrm{~cm}^{2}
$$

And the mass of each piece is proportional to the area. Thus,

$$
\begin{aligned}
x_{\mathrm{CG}} & =\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{\left(72.0 \mathrm{~cm}^{2}\right)(2.00 \mathrm{~cm})+\left(32.0 \mathrm{~cm}^{2}\right)(8.00 \mathrm{~cm})}{72.0 \mathrm{~cm}^{2}+32.0 \mathrm{~cm}^{2}} \\
& =3.85 \mathrm{~cm}
\end{aligned}
$$

ANS. FIG. P12.3
and

$$
\begin{aligned}
y_{\mathrm{CG}} & =\frac{\sum m_{i} y_{i}}{\sum m_{i}}=\frac{\left(72.0 \mathrm{~cm}^{2}\right)(9.00 \mathrm{~cm})+\left(32.0 \mathrm{~cm}^{2}\right)(2.00 \mathrm{~cm})}{104 \mathrm{~cm}^{2}} \\
& =6.85 \mathrm{~cm}
\end{aligned}
$$

2. Find the mass m of the counterweight needed to balance a truck with mass $M=1500$ kg on an incline of $\theta=45^{\circ}$ (Fig. P12.9). Assume both pulleys are friction-less and massless.

Ans:

The second condition for equilibrium at the pulley is

$$
\Sigma \tau=0=m g(3 r)-T r
$$

and from equilibrium at the truck, we obtain

$$
\begin{aligned}
& 2 T-M g \sin 45.0^{\circ}=0 \\
& T=\frac{M g \sin 45.0^{\circ}}{2} \\
&=\frac{(1500 \mathrm{~kg}) g \sin 45.0^{\circ}}{2} \\
&=530 g \mathrm{~N}
\end{aligned}
$$

solving for the mass of the counterweight from [1] and substituting gives

$$
m=\frac{T}{3 g}=\frac{530 g}{3 g}=177 \mathrm{~kg}
$$

ANS. FIG. P12.9

3. A uniform beam of length 7.60 m and weight $4.50 \times 10^{2} \mathrm{~N}$ is carried by two workers, Sam and Joe, as shown in Figure P12.11. Determine the force that each person exerts on the beam.

Ans:

Figure P12.11
Since the beam is in equilibrium, we choose the center as our pivot point and require that

$$
\Sigma \tau_{\text {center }}=-F_{\mathrm{Sam}}(2.80 \mathrm{~m})+F_{\mathrm{Joe}}(1.80 \mathrm{~m})=0
$$

or

$$
\begin{equation*}
F_{\mathrm{Joe}}=1.56 F_{\mathrm{Sam}} \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\Sigma F_{y}=0 \Rightarrow F_{\mathrm{Sam}}+F_{\mathrm{Joe}}=450 \mathrm{~N} \tag{2}
\end{equation*}
$$

Substitute equation [1] into [2] to get the following:

$$
F_{\mathrm{Sam}}+1.56 F_{\mathrm{Sam}}=450 \mathrm{~N} \text { or } F_{\mathrm{Sam}}=\frac{450 \mathrm{~N}}{2.56}=176 \mathrm{~N}
$$

Then, equation [1] yields $F_{\text {Joe }}=1.56(176 \mathrm{~N})=274 \mathrm{~N}$

Sam exerts an upward force of 176 N .

Joe exerts an upward force of 274 N .
4. A steel wire of diameter 1 mm can support a tension of 0.2 kN . A steel cable to support a tension of 20 kN should have diameter of what order of magnitude?

Ans:
Count the wires. If they are wrapped together so that all support nearly equal stress, the
number should be

$$
\frac{20.0 \mathrm{kN}}{0.200 \mathrm{kN}}=100
$$

Since cross-sectional area is proportional to diameter squared, the diameter of the cable will be

$$
(1 \mathrm{~mm}) \sqrt{100} \sim 1 \mathrm{~cm}
$$

5. A $1200-\mathrm{N}$ uniform boom at $\phi=65^{\circ}$ to the vertical is supported by a cable at an angle $\theta=25.0^{\circ}$ to the horizontal as shown in Figure P12.46. The boom is pivoted at the bottom, and an object of weight $m=2000 \mathrm{~N}$ hangs from its top. Find (a) the tension in the support cable and (b) the components of the reaction force exerted by the floor on the boom.

Ans:
ANS. FIG. P12.46 shows the force diagram.

$$
\begin{aligned}
& \Sigma \tau_{\text {point } \mathrm{O}}=0 \text { gives } \\
& \begin{aligned}
&\left(T \cos 25.0^{\circ}\right)\left(\frac{3 \ell}{4} \sin 65.0^{\circ}\right)+\left(T \sin 25.0^{\circ}\right)\left(\frac{3 \ell}{4} \cos 65.0^{\circ}\right) \\
&=(2000 \mathrm{~N})\left(\ell \cos 65.0^{\circ}\right)+(1200 \mathrm{~N})\left(\frac{\ell}{2} \cos 65.0^{\circ}\right)
\end{aligned}
\end{aligned}
$$

From which, $T=1465 \mathrm{~N}=1.46 \mathrm{kN}$

ANS. FIG. P12.46

$$
\text { From } \Sigma F_{x}=0,
$$

$H=T \cos 25.0^{\circ}=1328 \mathrm{~N}($ toward right $)=1.33 \mathrm{kN}$
From $\Sigma F_{y}=0$,
$V=3200 \mathrm{~N}-T \sin 25.0^{\circ}=2581 \mathrm{~N}($ upward $)=2.58 \mathrm{kN}$

