1. (a) Find the angular speed of the Earth's rotation about its axis. (b) How does this rotation affect the shape of the Earth?
Ans:
2. A dentist's drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of $2.51 \times 10^{4} \mathrm{rev} / \mathrm{min}$. (a) Find the drill's angular acceleration. (b) Determine the angle (in radians) through which the drill rotates during this period. Ans:
3. A car accelerates uniformly from rest and reaches a speed of $22.0 \mathrm{~m} / \mathrm{s}$ in 9.00 s . Assuming the diameter of a tire is 58.0 cm , (a) find the number of revolutions the tire makes during this motion, assuming that no slipping occurs. (b) What is the final angular speed of a tire in revolutions per second?
Ans:
4. Find the net torque on the wheel in Figure P10.27 about the axle through O, taking a $=10.0 \mathrm{~cm}$ and $b=25.0 \mathrm{~cm}$.

Ans:

Figure P10.27
5. A 150 -kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of $0.500 \mathrm{rev} / \mathrm{s}$ in 2.00 s ?
Ans:

Chapter 11

1. The displacement vectors 42.0 cm at 15.0° and 23.0 cm at 65.0° both start from the origin and form two sides of a parallelogram. Both angles are measured counterclockwise from the x axis. (a) Find the area of the parallelogram. (b) Find the length of its longer diagonal.
Ans:
2. The position vector of a particle of mass 2.00 kg as a function of time is given by $\overrightarrow{\mathbf{r}}=(6.00 \hat{\mathbf{i}}+5.00 t \hat{\mathbf{j}})$, where $\overrightarrow{\mathbf{r}}$ is in meters and t is in seconds. Determine the angular momentum of the particle about the origin as a function of time.
Ans:
3. A uniform solid disk of mass $m=3.00 \mathrm{~kg}$ and radius $r=0.200 \mathrm{~m}$ rotates about a fixed axis perpendicular to its face with angular frequency $6.00 \mathrm{rad} / \mathrm{s}$. Calculate the magnitude of the angular momentum of the disk when the axis of rotation (a) passes through its center of mass and (b) passes through a point midway between the center and the rim.

Ans:
4. A playground merry-go-round of radius $R=2.00 \mathrm{~m}$ has a moment of inertia $I=$ $250 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and is rotating at $10.0 \mathrm{rev} / \mathrm{min}$ about a frictionless, vertical axle. Facing the axle, a 25.0 -kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?
Ans:

