

General Physics- II, Quiz 9s

PHYS10000AA, Fall Semester-107 2019-06-04

Department of Physics National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, 97401, Taiwan

St. ID:		Name:
St. 1D.	•	Name.

Note: You can use pencil or any pen in answering the problems. Dictionary, calculators and mathematics tables are allowed. Please hand in both solution and this problem sheet.

ABSOLUTELY NO CHEATING!

Problems (total 4 problems, 100%)

1. A circular loop of wire of radius 12.0 cm is placed in a magnetic field directed perpendicular to the plane of the loop as in Figure P30.1. If the field decreases at the rate of 0.050 0 T/s in some time interval, find the magnitude of the emf induced in the loop during this interval. (25%)

Ans: 2.26 mV

With the field directed perpendicular to the plane of the coil, the flux through the coil is $\Phi_B = BA\cos 0^\circ = BA$. As the magnitude of the field increases, the magnitude of the induced emf in the coil is

Figure P30.1

$$|\mathcal{E}| = \frac{\left|\Delta\Phi_{B}\right|}{\Delta t} = \left(\frac{\Delta B}{\Delta t}\right) A = (0.050 \text{ 0 T/s}) \left[\pi (0.120 \text{ m})^{2}\right]$$
$$= 2.26 \times 10^{-3} \text{ V} = \boxed{2.26 \text{ mV}}$$

2. A long solenoid has n = 400 turns per meter and carries a current given by $I = 30.0(1-e^{-1.60t})$, where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (Fig. P30.4). What emf is induced in the coil by the changing current? (25%)

Ans: $\varepsilon = 68.2e^{-1.60t}$

The solenoid creates a magnetic field

$$B = \mu_0 n I = (4\pi \times 10^{-7} \text{ N/A}^2)(400 \text{ turns/m})(30.0 \text{ A})(1 - e^{-1.60 \text{ t}})$$

$$B = (1.51 \times 10^{-2} \text{ N/m} \cdot \text{A})(1 - e^{-1.60 t})$$

The magnetic flux through one turn of the flat coil is $\Phi_B = \int B dA \cos \theta$, but

General Physics II Quiz 2 (107/2018). Dept. of Physics, NDHU.

since $dA \cos \theta$ refers to the area perpendicular to the flux, and the magnetic field is uniform over the area A of the flat coil, this integral simplifies to

$$\Phi_{B} = B \int dA = B(\pi R^{2})$$

$$= (1.51 \times 10^{-2} \text{ N/m} \cdot \text{A})(1 - e^{-1.60t}) [\pi (0.060 \text{ 0 m})^{2}]$$

$$= (1.71 \times 10^{-4} \text{ N/m} \cdot \text{A})(1 - e^{-1.60t})$$

The emf generated in the *N*-turn coil is $\mathcal{E} = -N d\Phi_B/dt$. Because *t* has the standard unit of seconds, the factor 1.60 must have the unit s⁻¹.

$$\mathcal{E} = -(250) \left(1.71 \times 10^{-4} \frac{\text{N} \cdot \text{m}}{\text{A}} \right) \frac{d \left(1 - e^{-1.60 t} \right)}{dt}$$
$$= -\left(0.042 6 \frac{\text{N} \cdot \text{m}}{\text{A}} \right) (1.60 \text{ s}^{-1}) e^{t-1.60}$$

 $\mathcal{E} = 68.2e^{-1.60t}$, where t is in seconds and \mathcal{E} is in mV.

ANS. FIG. P30.4

3. A 10.0-mH inductor carries a current $i = I_{\text{max}} \sin \nu t$, with $I_{\text{max}} = 5.00$ A and $f = \omega/2\pi = 60.0$ Hz. What is the self-induced emf as a function of time? (25%)

Ans: $\varepsilon = -18.8\cos 120\pi t$

Using the definition of self-inductance, $\mathcal{E} = -L \frac{di}{dt}$, we obtain

$$\mathcal{E} = -L\frac{d}{dt} (I_i \sin \omega t) = -L\omega (I_i \cos \omega t)$$
$$= -(10.0 \times 10^{-3})[2\pi (60.0)](5.00) \cos \omega t$$

 $\mathcal{E} = -18.8\cos 120\pi t$, where \mathcal{E} is in volts and t is in seconds.

4. The current in a 4.00 mH-inductor varies in time as shown in Figure P31.8. Construct a graph of the self-induced emf across the inductor over the time interval t = 0 to t = 12.0 ms. (25%)

Figure P31.8

The current change is linear, so

$$\mathcal{E} = -L\frac{di}{dt} = -L\frac{\Delta i}{\Delta t}.$$

t = 0 to 4 ms:

$$\mathcal{E} = -(4.00 \text{ mH}) \frac{-2.00 \text{ mA}}{4.00 \text{ ms}} = +2.00 \text{ mV}$$

t = 4 to 8 ms:

$$\mathcal{E} = -(4.00 \text{ mH}) \frac{+5.00 \text{ mA}}{4.00 \text{ ms}} = -5.00 \text{ mV}$$

t = 8 to 10 ms:

$$\mathcal{E} = -(4.00 \text{ mH}) \frac{0}{2.00 \text{ ms}} = 0.00 \text{ mV}$$

t = 10 to 12 ms:

$$\mathcal{E} = -(4.00 \text{ mH}) \frac{-3.00 \text{ mA}}{2.00 \text{ ms}} = +6.00 \text{ mV}$$