Department of Physics
National Dong Hwa University，1，Sec．2，
General Physics－II，Quiz 9
PHYS1000AA，AB，AC：106－2 2018．06．05

Name： \qquad

Chapter 26－27，Serway；ABSOLUTELY NO CHEATING！
Please write down the answers on the blank space or on the back of this paper．Answer should be in english．［ ］indicates the question points．

1．Two capacitors，$C_{1}=5.00 \mathrm{mF}$ and $C_{2}=12.0 \mathrm{mF}$ ，are connected in parallel，and the resulting combination is connected to a 9.00 V battery．Find（a）the equivalent capacitance of the combination and the potential difference across each capacitor．（b）What will be the results if they $\left(\mathrm{C}_{1} \& \mathrm{C}_{2}\right)$ are connected in series？［25＋25＝50］

Solution：

（a）Capacitors in parallel add．Thus，the equivalent capacitor has a value of

$$
C_{\mathrm{eq}}=C_{1}+C_{2}=5.00 \mu \mathrm{~F}+12.0 \mu \mathrm{~F}=17.0 \mu \mathrm{~F}
$$

The potential difference across each branch is the same and equal to the voltage of the battery．

$$
\Delta V=9.0 \mathrm{~V}
$$

（b）In series capacitors add as

$$
\begin{aligned}
& \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{5.00 \mu \mathrm{~F}}+\frac{1}{12.0 \mu \mathrm{~F}} \\
& C_{\mathrm{eq}}=3.53 \mu \mathrm{~F}
\end{aligned}
$$

The charge on the equivalent capacitor is

$$
Q_{\mathrm{eq}}=C_{\mathrm{eq}} \Delta V=(3.53 \mu \mathrm{~F})(9.00 \mathrm{~V})=31.8 \mu \mathrm{C}
$$

Each of the series capacitors has this same charge on it．

$$
\text { So } \quad Q_{1}=Q_{2}=31.8 \mu C
$$

The potential difference across each is

$$
\begin{aligned}
& \Delta V_{1}=\frac{Q_{1}}{C_{1}}=\frac{31.8 \mu \mathrm{C}}{5.00 \mu \mathrm{~F}}=6.35 \mathrm{~V} \\
& \Delta V_{2}=\frac{Q_{2}}{C_{2}}=\frac{31.8 \mu \mathrm{C}}{12.0 \mu \mathrm{~F}}=2.65 \mathrm{~V}
\end{aligned}
$$

2. If you want to fabricate a uniform wire from 1.00 g of copper and the wire is to have a resistance of $\mathrm{R}=0.500 \Omega$ and all the copper is to be used, what must be (a) the length and (b) the diameter of this wire ? (c) If the magnitude of the drift velocity of free electrons in this copper wire is $7.84 \times 10^{-4} \mathrm{~m} / \mathrm{s}$, what is the electric field in the conductor? [20+10+20]

Solution:

(a) The total mass can be written as $m=\rho_{m} V=\rho_{m} A \ell \quad \rightarrow \quad A=\frac{m}{\rho_{m} \ell}$, where $\rho_{m} \equiv$ mass density.

Taking $\rho \equiv$ resistivity, $R=\frac{\rho \ell}{A}=\frac{\rho \ell}{m / \rho_{m} \ell}=\frac{\rho \rho_{m} \ell^{2}}{m}$.
Thus,

$$
\begin{aligned}
\mathrm{l} & =\sqrt{\frac{m R}{\rho \rho_{m}}}=\sqrt{\frac{\left(1.00 \times 10^{-3} \mathrm{~kg}\right)(0.500 \Omega)}{\left(1.70 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(8.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}} \\
& =1.82 \mathrm{~m}
\end{aligned}
$$

(b) The total volume, $V=\frac{m}{\rho_{m}}, \quad$ or $\quad \pi r^{2} \ell=\frac{m}{\rho_{m}}$ for a wire

Thus,

$$
r=\sqrt{\frac{m}{\pi \rho_{m} \ell}}=\sqrt{\frac{1.00 \times 10^{-3} \mathrm{~kg}}{\pi\left(8.92 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.82 \mathrm{~m})}}=1.40 \times 10^{-4} \mathrm{~m}
$$

The diameter is twice this distance: diameter $=2.8 \times 10^{-4} \mathrm{~m}$
(c) The resistivity and drift velocity is related to the electric field within the copper wire

$$
\rho=\frac{m}{n e^{2} \tau} \rightarrow \tau=\frac{m}{\rho n e^{2}}
$$

and

$$
\begin{aligned}
& v_{d}=\frac{e E}{m} \tau=\frac{e E}{m} \frac{m}{\rho n e^{2}}=\frac{E}{\rho n e} \\
& \therefore E=\rho n e v_{d}
\end{aligned}
$$

Where n is the electron density and can be found by

$$
n=\frac{N_{A} \rho_{C u}}{M}=\frac{\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(8920 \mathrm{~kg} / \mathrm{m}^{3}\right)}{0.0635 \mathrm{~kg} / \mathrm{mol}}=8.46 \times 10^{28} \mathrm{~m}^{-3}
$$

The electric field is then

$$
\begin{aligned}
E= & \rho n e v_{d} \\
E & =\left(1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(8.46 \times 10^{28} \mathrm{~m}^{-3}\right) \\
& \times\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(7.84 \times 10^{-4} \mathrm{~m} / \mathrm{s}\right) \\
= & 0.18 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

