

Department of Physics National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, 97401, Taiwan **General Physics-II, Quiz 6-Sol** PHYS1000AA, AB, AC: 106-2 2018.03.29

St. ID: Na	ime:
Solutions:	
 (a) Write down the first law of thermodynamics (Equation). Solution: 	[10+20 = 30]
(a) $dE_{Int.} = dQ-dW$ (If the work is done by system)	
or $dE_{int.} = dQ+dW$ (If the work is done on the system by external	rnal source)
Where, E_{int} = Internal energy of a system	
Q = Heat	
W = Total work	
(b) Marth (1) the right can dition for the thermodynamical mean	aaaa kallaan

Adiabatic process	$\sqrt{\mathbf{Q} = 0} / \mathbf{W} = 0 / \Delta \mathbf{E}_{\text{int}} = 0$?
Constant Volume process	$Q = 0 / vW = 0 / \Delta E_{int} = 0$?
Closed Cycle process	$\mathbf{Q} = 0 / \mathbf{W} = 0 / \mathbf{V} \Delta \mathbf{E}_{\text{int}} = 0 ?$
Free Expansion process	$\mathbf{VQ} = \mathbf{W} = 0 / \Delta \mathbf{E}_{int} = 0$?

- For an isobaric expansion of an ideal gas at 300 K and 5.50 kPa, if the volume is increased from 1 m³ to 5 m³ and 12.5 kJ energy is transferred to the gas by heat. Find out (a) the change in its internal energy and (b) its final temperature ? [30]
 Solution:
 - (a) We use the energy version of the non-isolated system model.

$$\Delta E_{\rm int} = Q + W$$

Where, $W = -P\Delta V$ for a constant-pressure process so that

 $\Delta E_{\text{int}} = Q - P \Delta V$

= 12.5 kJ-5.50 k Pa (5 m³-1 m³) = 28 kJ

(b) Since pressure and quantity of gas are constant, we know the equation of state is

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$T_2 = \frac{V_2}{V_1} T_1 = \left(\frac{5 \text{ m}^3}{1 \text{ m}^3}\right) (300 \text{ K}) = 1500 K$$

3. (a) Write down the formula of total kinetic energy of an ideal gas interms of temperature (T). (b) If a 10-L of oxygen-cyllinder contains O_2 gas at 22.0°C and 5 atm., find out the total translational kinetic energy of the gas molecules. (1 atm = 1.013×10^5 Pa) [10+30 = 40]

Solution :

(a) Total kinetic energy,
$$K_{total} = \frac{3}{2}nRT$$

Where , $n = N/N_A$ for the number of moles of gas
R= Universal gas constant (8.31 J/mol. K)
T = temperature

(b) From the ideal gas law,

$$PV = nRT = \frac{2N}{3}(\frac{1}{2}m_0\nu^2) = \frac{N}{3}(m_0\nu^2)$$

The total translational kinetic energy is $E_{\text{trans}} = N(\frac{1}{2}m_0v^2)$

$$E_{\text{trans}} = \frac{3}{2}PV = \frac{3}{2} (5 \times 1.013 \times 10^5 \text{ Pa}) (10 \times 10^{-3} \text{ m}^3)$$

:. $E_{\text{trans}} = 7.59 kJ$