Solutions：

1．（a）Write down the first law of thermodynamics（Equation）．

Solution：

（a） $\mathrm{dE}_{\text {Int．}}=\mathrm{dQ}-\mathrm{dW} \quad$（ If the work is done by system）
or $\mathrm{dE}_{\text {int．}}=\mathrm{dQ}+\mathrm{dW}$（ If the work is done on the system by external source ）

$$
\text { Where, } \begin{aligned}
& \mathrm{E}_{\text {int }} \\
& =\text { Internal energy of a system } \\
& \mathrm{Q}=\text { Heat } \\
& \mathrm{W}
\end{aligned}
$$

（b）Mark（ V ）the right condition for the thermodynamical processes bellow：

Adiabatic process
Constant Volume process
Closed Cycle process
Free Expansion process

$$
\begin{aligned}
& \mathrm{VQ}=0 / \mathrm{W}=0 / \Delta \mathrm{E}_{\text {int }}=0 ? \\
& \mathrm{Q}=0 / \mathrm{VW}=0 / \Delta \mathrm{E}_{\text {int }}=0 ? \\
& \mathrm{Q}=0 / \mathrm{W}=0 / \mathrm{V} \Delta \mathrm{E}_{\text {int }}=0 ? \\
& \mathrm{~V}=\mathrm{W}=0 / \Delta \mathrm{E}_{\text {int }}=0 ?
\end{aligned}
$$

2．For an isobaric expansion of an ideal gas at 300 K and 5.50 kPa ，if the volume is increased from $1 \mathrm{~m}^{3}$ to $5 \mathrm{~m}^{3}$ and 12.5 kJ energy is transferred to the gas by heat．Find out（a）the change in its internal energy and（b）its final temperature ？

Solution：

（a）We use the energy version of the non－isolated system model．

$$
\Delta E_{\mathrm{int}}=Q+W
$$

Where， $\mathrm{W}=-P \Delta V$ for a constant－pressure process so that

$$
\begin{aligned}
\Delta E_{\text {int }} & =Q-P \Delta V \\
& =12.5 \mathrm{~kJ}-5.50 \mathrm{kPa}\left(5 \mathrm{~m}^{3}-1 \mathrm{~m}^{3}\right)=28 \mathrm{~kJ}
\end{aligned}
$$

（b）Since pressure and quantity of gas are constant，we know the equation of state is

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$$
T_{2}=\frac{V_{2}}{V_{1}} T_{1}=\left(\frac{5 \mathrm{~m}^{3}}{1 \mathrm{~m}^{3}}\right)(300 \mathrm{~K})=1500 \mathrm{~K}
$$

3. (a) Write down the formula of total kinetic energy of an ideal gas interms of temperature (T). (b) If a $10-\mathrm{L}$ of oxygen-cyllinder contains O_{2} gas at $22.0^{\circ} \mathrm{C}$ and 5 atm ., find out the total translational kinetic energy of the gas molecules. $\left(1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}\right)$

Solution :

(a) Total kinetic energy, $\mathrm{K}_{\text {total }}=\frac{3}{2} \mathrm{nRT}$

Where, $\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$ for the number of moles of gas
$\mathrm{R}=$ Universal gas constant ($8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$)

$$
\mathrm{T}=\text { temperature }
$$

(b) From the ideal gas law,

$$
P V=n R T=\frac{2 N}{3}\left(\frac{1}{2} m_{0} \nu^{2}\right)=\frac{N}{3}\left(m_{0} v^{2}\right)
$$

The total translational kinetic energy is $E_{\text {trans }}=N\left(\frac{1}{2} m_{0} \nu^{2}\right)$

$$
\begin{aligned}
& E_{\text {trans }}=\frac{3}{2} P V=\frac{3}{2}\left(5 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(10 \times 10^{-3} \mathrm{~m}^{3}\right) \\
& \therefore E_{\text {trans }}=7.59 \mathrm{~kJ}
\end{aligned}
$$

