Department of Physics
National Dong Hwa University，1，Sec．2，
Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

General Physics－I，Quiz 5

PHYS1000AA，AB，AC，Fall Semester－106
2018－01－09

St．ID： \qquad ，

Name： \qquad

Chapter17－18，Serway；ABSOLUTELY NO CHEATING！
 Please write down the answers on the blank space or on the back of this paper．Answer should be in english．［ ］indicates the question points．

Q1．Suppose a firework charge is detonated at the top of Taipei－101 as show in figure．Due to the explosion if the acoustic pressure is reached maximum of $\Delta P_{\max }=20 \mathrm{~Pa}$ at the distance of $1^{\text {st }}$ person $d_{1}=1 \times 10^{3} \mathrm{~m}$ from the explosion，what sound level will be experienced by the $2^{\text {nd }}$ person at a distance of $d_{2}=4 \times 10^{3} \mathrm{~m}$ ？Let the speed of sound is constant at $332 \mathrm{~m} / \mathrm{s}$ throughout the atmosphere and the air absorbs sound energy at the rate of $10 \mathrm{~dB} / \mathrm{km}$ ，the density of air $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{I}_{0}=10^{-12} \mathrm{w} / \mathrm{m}^{2}$［50］Similar to p． 33 chapter 17

Solutions：The sound intensity at distance d_{1} is，suppressing units，

$$
I_{1} \frac{\Delta P_{\max }^{2}}{2 \rho v}=\frac{(20)^{2}}{2(1.20)(332)}=0.5 \mathrm{~W} / \mathrm{m}^{2}
$$

If air does not absorb sound energy，the intensity of sound is inversely proportional to the square of the distance from its source．The intensity at distance d_{2} is

$$
\begin{aligned}
I_{2} & =\left(\frac{d_{1}}{d_{2}}\right)^{2} I_{1}=\left(\frac{1000 \mathrm{~m}}{4000 \mathrm{~m}}\right)^{2} I_{1}=\frac{1}{16}\left(0.5 \mathrm{~W} / \mathrm{m}^{2}\right) \\
& =3.1 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

which has an intensity level of

$$
\begin{aligned}
\beta_{2} & =(10 \mathrm{~dB}) \log \left(\frac{I_{2}}{I_{0}}\right)=(10 \mathrm{~dB}) \log \left(\frac{3.1 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}}{10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right) \\
& =100.4 \mathrm{~dB}
\end{aligned}
$$

Allowing for absorption of the wave over the distance traveled，

$$
\beta_{2}^{\prime}=\beta_{2}-(10 \mathrm{~dB} / \mathrm{km})(4000 \mathrm{~m}-1000 \mathrm{~m})=74.0 \mathrm{~dB}
$$

Q2. Guzheng (古箏) is a popular Chinese traditional musical instrument. During playing Guzheng if you create two waves on one string which are expressed by the wave functions $\boldsymbol{Y}_{\mathbf{1}}=\mathbf{4} \boldsymbol{\operatorname { c o s }}(\mathbf{4} \boldsymbol{x}-\mathbf{1 . 5} \boldsymbol{t}+\boldsymbol{\phi})$ and $\boldsymbol{Y}_{\mathbf{2}}=$ $5 \sin (4 x-2 t+\boldsymbol{t})$, what will be their superposition $\left(\mathbf{Y}_{1}+\mathbf{Y}_{2}\right)$ at the points (a) $x=1 \mathrm{~m}, t=1 \mathrm{~s}, \phi=0$ and (b) $x=$ $0.5 \mathrm{~m}, t=0 \mathrm{~s}, \phi=0$. (c) What results are expected for (a) and (b) if you change the phase $\phi=2 \pi$, explain. $[20+20+10=50]$ Similar to p. 3 chapter 18

Solutions: The superposition of the waves is given by

$$
Y=Y_{1}+Y_{2}=4 \cos (4 x-1.5 t+\phi)+5 \sin (4 x-2 t+\phi)
$$

Evaluated at the given x values.
(a) At $x=1.00, t=1.00, \phi=0$ the superposition of the two waves gives

$$
\begin{aligned}
& y=4 \cos [4(1.0)-1.5(1.0)] \\
&+5 \sin [4(1.0)-2(1.0)] \\
&=4 \cos (2.5 \mathrm{rad})+5 \sin (2.0 \mathrm{rad})=1.34 \mathrm{~m}
\end{aligned}
$$

(b) At $x=0.5, t=0, \phi=0$ the superposition of the two waves gives

$$
\begin{aligned}
& y=4 \cos [4(0.5)-1.50(0)] \\
&+5 \sin [4(0.5)-2(0)] \\
&=4 \cos (0.5 \mathrm{rad})+5 \sin (0 \mathrm{rad})=3.15 \mathrm{~m}
\end{aligned}
$$

(c) If $\phi=2 \pi$, there will be no change of the result of (a) and (b) because

$$
\sin (2 \pi+\theta)=\sin \theta \text { and } \cos (2 \pi+\theta)=\cos \theta .
$$

