Department of Physics
National Dong Hwa University，1，Sec．2， Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

General Physics－I，Quiz 4 Sol．

 PHYS1000AA，AB，AC，Fall Semester－1062017－12－26

St．ID： \qquad ，

Name： \qquad

Chapter15－16，Serway；ABSOLUTELY NO CHEATING！
 Please write down the answers on the blank space or on the back of this paper．Answer should be in english．［ ］indicates the question points．

Q1．（a）Write down the equation of motion（second order differential）for damping oscillation of a spring and its possible solution．（b）It is well known that most cars have the shock absorber used as a damped oscillator to balance the car while you travel through a zigzag path．For a strong jerking if the spring is in damped oscillation，calculate the frequency for that oscillation．Let the damping coefficient $\mathrm{b}=3 \mathrm{~N} . \mathrm{s} / \mathrm{m}$ ，the mass of the spring $\mathrm{m}=20 \mathrm{~kg}$ and spring constant $\mathrm{k}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{m} .[10+10+30=50]$
（The question is similar to P． 47 in Book）

Solution：

（a）$\sum F_{x}=-k x-b V_{x}=m a_{x}$

$$
\left.m \frac{d x^{2}}{d t^{2}}=-k x-b \frac{d x}{d t}\right\} \rightarrow(\text { damping term })
$$

Possible solution is $x=A e^{-\frac{b}{2 m} t} \cos (\omega t+\phi)$
Where， $\mathrm{A}=$ Amplitude of wave ， $\mathrm{b}=$ damping constant ， ω＝frequency of damping oscillation
（b）We know that，
$\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{2.0 \times 10^{5}}{20}}=100 \mathrm{~Hz}$
With damping oscillation，the frequency is given by
$\omega=\sqrt{\omega_{0}^{2}-\left(\frac{b}{2 m}\right)^{2}}=\sqrt{(100 \mathrm{~Hz})^{2}-\left(\frac{3 \mathrm{~N} . \mathrm{m} / \mathrm{s}}{2 \times 20 \mathrm{~kg}-\mathrm{s}}\right)^{2}}=99.9 \square 100 \mathrm{~Hz}$
So the frequency will be ，$f=\frac{\omega}{2 \pi}=\frac{100}{2 \times 3.14}=15.9 \mathrm{~Hz} \square 16 \mathrm{~Hz}$

Q2. (a) What is the difference between transverse and longitudinal wave? Give an example for each of the wave. (b) When you play a Guitar, you produce the transverse wave in the string. Suppose a string length is 1 m and for your plucking at the end of the string if a transverse pulse is produced and it makes 4 trips down and back along the string by 1 s , what will be the tension in the string? Let the string has the mass of 0.2 kg . [$10+10+30$]
(Question is similar to P. 25 in Book)

Solution:

(a) Transverse wave : The medium moves parpendicular to the traveling of the wave Example : Guiter string wave, Ocean wave etc.
Longgitudinal wave : The medium moves parallel to the traveling of the wave Example: Sound wave, P-wave of earthquake
(b) The down and back distance is, $x=(1 m+1 m)=2 m$

So the speed of the wave is, $v=\frac{x}{t}=\frac{2}{1}=2 \mathrm{~m} / \mathrm{s}$
We know that the speed of standing a wave on string is

$$
v=\sqrt{\frac{T}{\mu}}, \quad \text { where } \mathrm{T}=\text { tension produced at the end of string , }
$$

$\mu=$ mass per unit lenght of string
Therefore, $\mathrm{T}=\mathrm{v}^{2} \times \mu=2^{2} \mathrm{~m}^{2} / \mathrm{s}^{2} 0.2 \mathrm{~kg} / \mathrm{m}=0.8 \mathrm{~N}$

