Department of Physics
National Dong Hwa University，1，Sec．2，
Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

General Physics I，Final－1

PHYS1000AA，Class year104
2016－01－07，Thursday

Quiz－Final－1

1．Solution：
（a）$F=-k x=m a_{x}$
$a_{x}=-\frac{k}{m} x$
$a_{x}=\frac{d V_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x$
$\therefore \frac{d^{2} x(t)}{d t^{2}}=-\frac{k}{m} x$
$\therefore \frac{d^{2} x(t)}{d t^{2}}+\frac{k}{m} x=0$
（b）$F_{T}=-m g \sin \theta=m a s=m \frac{d^{2} S}{d t^{2}}$
Where，$S=L \theta \quad \therefore \frac{d^{2} S}{d t^{2}}=L \frac{d^{2} \theta}{d t^{2}}$
$\Rightarrow-m g \sin \theta=m L \frac{d^{2} \theta}{d t^{2}}$
$\therefore \frac{d^{2} \theta}{d t^{2}}=-\left(\frac{g}{L}\right) \sin \theta$
（c）In this figure， $\mathrm{S}=\mathrm{R} \theta, \therefore \theta=\frac{S}{R} \Rightarrow \ddot{\theta}=\frac{\ddot{S}}{R}$
$\ddot{\theta}+\left(\frac{g}{L}\right) \theta=0$
$\frac{\ddot{S}}{R}+\left(\frac{g}{L}\right) \frac{S}{R}=0$
$\therefore \ddot{S}+\left(\frac{g}{L}\right) S=0$ ，this is the same a in（a）．So they both are Simple Harmonic Oscillators
2. Solution:

Schemically. All components are showing at the above.
(a) The efficiency η of a reversible heat angie

$$
\begin{aligned}
& \eta=\frac{\omega}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}} \quad \text { - heating } \\
& \eta=\frac{\omega}{Q_{2}}=\frac{Q_{2}-Q_{1}}{Q_{2}}=\frac{T_{1}-T_{1}}{T_{2}}-\text { cooling }
\end{aligned}
$$

\therefore for cooling $\eta=1-\frac{280}{320}=0.125=\frac{Q_{2}-Q_{1}}{Q_{2}}=\frac{Q_{2}-5005}{Q_{2}}$

$$
\therefore Q_{2}=5715 \mathrm{~J} \Rightarrow W=\eta \cdot Q_{2}=0,125 \times 5715 \times 715 \mathrm{~J}
$$

(b)

$$
\begin{aligned}
\Delta S & =\frac{Q_{2}}{T_{\text {out }}}-\frac{Q_{2}}{T_{\text {cylinder }}}=Q_{2}\left[\frac{1}{305}-\frac{1}{320}\right] \\
& =0.88 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

3. Solution:

$$
\frac{\left.k_{1}^{k_{1}} \square-l_{1}^{k_{2}}\right)}{\Delta x_{1}=-\Delta x_{2}}
$$

if we generate a displacement Δx, then

$$
\begin{aligned}
\Delta x_{1} & =\Delta x \\
\Delta x_{2} & =-\Delta x \\
F & =-k_{1} \Delta x_{1}-\left(-k_{2} \Delta x_{2}\right)=-k_{1} \Delta x+k_{2}(-\Delta x) \\
& =-\left(k_{1}+h_{2}\right) \Delta x \\
& =-k^{\prime} \Delta x \quad, k^{\prime}=k_{1}+k_{2} . \\
v & =\frac{1}{2 \pi} \sqrt{\frac{k^{\prime}}{m}}=\frac{1}{2 \pi} \sqrt{\frac{k_{1}+k_{2}}{m}}
\end{aligned}
$$

4. Solution:

Adiab tie process for an ideal gas

$$
\begin{aligned}
Q & =0 . \\
\Delta E_{\text {int }} & =Q+w={ }^{w}=n C_{v} d T=-p d v
\end{aligned}
$$

But $P V=n \Omega T$

$$
\begin{aligned}
& P d v+v d p=n \Omega d T \\
&=-\frac{R}{C v} P d V \\
& \frac{d v}{v}+\frac{d P}{P}=-\left(\frac{C_{p}-C_{v}}{C n}\right) \frac{d v}{v} \\
&=(1-v) \frac{d v}{v} \\
& \frac{d p}{P}+\gamma \frac{d v}{v}=0 \\
& \ln p+v \ln V=\operatorname{Constat} \\
& P v^{2}=\operatorname{constat}
\end{aligned}
$$

5. Solution:

$$
\underset{x}{t} \rightarrow y_{1} \quad y_{2} \leftarrow E
$$

Let $y_{1}=A \sin \left(h_{x}-\omega t\right)$ travels to the right $y_{2}=\operatorname{Asin}(k x+\omega \tau)$ traveling to the left
The resulting wave is
(a)

$$
\begin{aligned}
y & =y_{1}+y_{2}=A \sin (h x-\omega t)+A \sin \left(k_{x}+\omega t\right) \\
& =2 A \sin (h x) \cos (\omega t)
\end{aligned}
$$

(h)

You have a New wave

$$
y=\underbrace{2 A \sin \left(h_{x}\right)}_{\text {Amplitude }} \underbrace{\cos (\omega \tau)}_{O_{\text {scillatio }}}
$$

thin wave form oscillates as a function Of $\cos (\omega \tau)$. it is not traveling anymore it stands there. So it is called Standing Wave.

6. Solution :

(a) The absolute pressure is
$P=P_{0}+h \rho g$, Where P_{0} is the air pressure and $h=2.0 \mathrm{~km}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore P=100000 \mathrm{~Pa}+\left(2000 \mathrm{~m} \times 1000 \mathrm{~kg} / \mathrm{m}^{3} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.97 \times 10^{7} \mathrm{~Pa}$
(b)The gauge pressure is the difference in pressure between the water outside and the air inside the submarine, which we suppose is at 1.00 atmosphere.

$$
\therefore P_{\text {gauge }}=P-P_{0}=h \rho g=1.96 \times 10^{7} P a
$$

The resultant inward force on the window is then

$$
F=P_{\text {gauge }} A=1.96 \times 10^{7} P a \times \pi r^{2}=1.96 \times 10^{7} P a \times 3.14 \times(2.0)^{2}=2.5 \times 10^{8} \mathrm{~N}
$$

7. Solution:

(a) Kepler's third law of planetary motion is
$T^{2}=K_{S} a^{3}$, where T is period of planeatary revolution, $a=$ The semimajor axis length of orbit and $\mathrm{K}_{S}=$ constant of proportionality (with respect to Sun)
(b) From figure we can find the major axis length of the orbit is

$$
2 a=2.5 \quad \therefore a=1.25 \mathrm{AU}
$$

and $\mathrm{a}+\mathrm{c}=2.0 \quad \therefore c=0.75 \mathrm{AU}$, where c is the distance between focus and the center of orbital axis
\therefore ecentricity $e=\frac{c}{a}=\frac{0.75}{1.25}=0.66$
(c)We know that $T^{2}=K_{S} a^{3}$

So $\quad T=\sqrt{K_{S} a^{3}}=a \sqrt{K_{S} a}=1.25 \mathrm{AU} \times \sqrt{2.97 \times 10^{-19} \times 1.25 \mathrm{AU}}$

$$
=1.25 \times 1.496 \times 10^{11} \times \sqrt{2.97 \times 10^{-19} \times 1.25 \times 1.496 \times 10^{11}}
$$

$$
=55165000 \text { seconds }=\frac{55165000 \text { days }}{3600 \times 24}=638.5 \text { days }=1.78 y e a r s
$$

