Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics I，Quiz 4

PHYS1000AA，Class year104／2015
2015－12－01，Thursday

Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

Quiz－4 Solution

1．Solution ：

（a）The absolute pressure is
$P=P_{0}+h \rho g$ ，Where P_{0} is the air pressure and $h=2.0 \mathrm{~km}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore P=100000 \mathrm{~Pa}+\left(2000 \mathrm{~m} \times 1000 \mathrm{~kg} / \mathrm{m}^{3} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.97 \times 10^{7} \mathrm{~Pa}$
（b）The gauge pressure is the difference in pressure between the water outside and the air inside the submarine，which we suppose is at 1.00 atmosphere．
$\therefore P_{\text {gauge }}=P-P_{0}=h \rho g=1.96 \times 10^{7} \mathrm{~Pa}$
The resultant inward force on the window is then
$F=P_{\text {gauge }} A=1.96 \times 10^{7} \mathrm{~Pa} \times \pi r^{2}=1.96 \times 10^{7} \mathrm{~Pa} \times 3.14 \times(2.0)^{2}=2.5 \times 10^{8} \mathrm{~N}$

2．Solution：

（a）Since the object in motion，we can use the equation of motion as

$$
\begin{aligned}
& x=v_{0} t+\frac{1}{2} g t^{2}, \text { where at initial time } v_{0}=0 \\
& \therefore x=\frac{1}{2} g t^{2} \Rightarrow 4 \mathrm{~m}=\frac{1}{2} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times t^{2}, \text { where } x=A=4 \mathrm{~m} \\
& \therefore t=\sqrt{\frac{8}{9.8}}=0.9 \mathrm{~s}
\end{aligned}
$$

This is needed to cover half of a full oscillation，So for a full oscillation time is called the period of a oscillation
$\therefore T=2 t=2 \times 0.9=1.8 \mathrm{sec}$
（b）The frquency if undamped will be $\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{2.0 \times 10^{4}}{10}}=44.7 / \mathrm{s}$
If we consider damping，then the frequency is defined by
$\omega=\sqrt{\omega_{0}^{2}-\frac{b^{2}}{2 m}}=\sqrt{(44.7)^{2}-\left(\frac{3.0 \times 10^{4}}{2 \times 10}\right)^{2}}=\sqrt{2000-\left(\frac{3.0 \times 10^{4}}{2 \times 10}\right)^{2}}=1499.3 i / \mathrm{s}$ ，where $i=\sqrt{-1}$

3. Solution:

(a)The distance will be covered by the string for down and back in four trips

$$
d_{\text {total }}=4(1.5 \mathrm{~m}+1.5 \mathrm{~m})=4 \times 3 \mathrm{~m}=12 \mathrm{~m}
$$

Then we cna find the speed of wave is $v=\frac{d_{\text {total }}}{t}$
$\therefore v=\frac{12 \mathrm{~m}}{0.8 \mathrm{~s}}=15 \mathrm{~m} / \mathrm{s}$
Now we know that $v=\sqrt{\frac{T}{\mu}}$, Where $T=$ String Tension produced at the edge and $\mu=$ Mass per unit length of string
$\therefore v=\sqrt{\frac{T}{\mu}} \Rightarrow T=\mu v^{2}=\left(\frac{50}{1000 \times 1.5} \mathrm{~kg} / \mathrm{m}\right) \times(15)^{2}=0.03 \times 225 \mathrm{~N}=7.5 \mathrm{~N}$
(b)Longitudinal wave will be produced

