Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics I，Quiz 3

PHYS1000AA，Class year104／2015
2015－11－12，Thursday

Quiz－3 Solution

1．Solution ：（Similar to problem No．10，Chap．13，text book $9^{\text {th }}$ edition）
（a）Newton＇s law of gravity is defined by
$F=\frac{G M m}{r^{2}}$ ，
Where $G=$ Universal gravitational constant ，M and m are the mass of two object in universe，$r=$ distance between the objects，$F=$ force between them．
（b）We know that ，gravitational force
$F=\frac{G M_{\text {earth }} m}{\left(R_{\text {earrh }}+h\right)^{2}}$ ，where $m=$ mass of meteoroid，$h=$ distance of mateoroid from earth surface $m a=\frac{G M_{\text {earth }} m}{\left(R_{\text {earth }}+h\right)^{2}}$ ，where $a=$ acceleration of meteoriod due to earth gravity
$\therefore a=\frac{G M_{\text {earth }}}{\left(R_{\text {earth }}+h\right)^{2}}=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{\left(R_{\text {earth }}+5 R_{\text {earth }}\right)^{2}}=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{\left(6 R_{\text {earth }}\right)^{2}}$

$$
=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{\left(6 \times 6.4 \times 10^{6}\right)^{2}}=0.30 \mathrm{~m} / \mathrm{s}^{2}
$$

（c）For angular motion we can define the cetripetal force in our case as bellow
$F=\frac{m v^{2}}{\left(R_{\text {earrh }}+h\right)} \Rightarrow m a=\frac{m v^{2}}{\left(R_{\text {earrh }}+h\right)} \Rightarrow a=\frac{v^{2}}{\left(R_{\text {earrh }}+h\right)} \Rightarrow v=\sqrt{\left(R_{\text {earth }}+h\right) \times a}$
$\therefore v=\sqrt{\left(R_{\text {earth }}+5 R_{\text {earth }}\right) \times a}=\sqrt{\left(6 \times 6.4 \times 10^{6}\right) \times 0.3}=3.5 \mathrm{~km} / \mathrm{s}$

2. Solution: (Similar to problem No37, Chap.13, text book $9^{\text {th }}$ edition)

(a) Kepler's third law of planetary motion is
$T^{2}=K_{s} a^{3}$, where T is period of planeatary revolution, $a=$ The semimajor axis length of orbit and $\mathrm{K}_{S}=$ constant of proportionality (with respect to Sun)
(b) From figure we can find the major axis length of the orbit is

$$
2 a=2.5 \quad \therefore a=1.25 \mathrm{AU}
$$

and $\mathrm{a}+\mathrm{c}=2.0 \quad \therefore c=0.75 \mathrm{AU}$, where c is the distance between focus and the center of orbital axis
\therefore ecentricity $e=\frac{c}{a}=\frac{0.75}{1.25}=0.66$
(c) We know that $T^{2}=K_{s} a^{3}$

So $\quad T=\sqrt{K_{S} a^{3}}=a \sqrt{K_{S} a}=1.25 \mathrm{AU} \times \sqrt{2.97 \times 10^{-19} \times 1.25 \mathrm{AU}}$
$=1.25 \times 1.496 \times 10^{11} \times \sqrt{2.97 \times 10^{-19} \times 1.25 \times 1.496 \times 10^{11}}$
$=55165000$ seconds $=\frac{55165000 \text { days }}{3600 \times 24}=638.5$ days $=1.78$ years

