General Physics I，Quiz 2
PHYS1000AA，Class year104／2015
Department of Physics
National Dong Hwa University，1，Sec．2，
Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

Quiz－2 Solution

1．Solution ：（Similar to problem No． 2 \＆7，Chap．12，text book $9^{\text {th }}$ edition）
（a）We can defind the center of gravity for X Ycoordinate as
$X_{C G}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}$ and $Y_{C G}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}$
In our case，we can write
$X_{C G}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{M X+m x}{M+m}=\frac{60 \times 4+40 \times 5}{60+40}=\frac{440}{100}=4.4 \mathrm{~m}$
and
$Y_{\text {CG }}=\frac{\sum m_{i} y_{i}}{\sum m_{i}}=\frac{M Y+m y}{M+m}=\frac{60 \times(-2)+40 \times 2}{60+40}=-\frac{40}{100}=0.4 \mathrm{~m}$
（b）Here we need to find out X and Y
Now we have，
$X_{C G}=\frac{\sum m_{i} X_{i}}{\sum m_{i}}=\frac{M X+m X}{M+m}=4 m$（Given in question）
So， $4 m=\frac{M X+m x}{M+m}=\frac{60 \times X+40 \times 5}{60+40}$（Since $\mathrm{x}=5 \mathrm{~m}$ is fixed）
$X=\frac{400-200}{60}=\frac{200}{60}=3.3 \mathrm{~m}$
Similarly
$Y_{C G}=\frac{60 \times Y+40 \times 2}{60+40}=0.4 \mathrm{~m}$
$Y=\frac{40-80}{60}=-0.3 \mathrm{~m}$
So M has to move 3.3 m in（＋ve） x －direction and 0.3 m （－ve）to get balance on the beam ．

2. Solution: (Similar to problem No39, Chap.12, text book $9^{\text {th }}$ edition)

(a) Stress $=$ The force applied per unit area on a object $=\frac{F}{A}$, where A=Area

$$
\text { Strain }=\frac{\text { Change of physicsl dimention of an object by the applied force }}{\text { Initial dimention }}
$$

Example, Shear Strain $=\frac{\Delta l}{L}=\frac{\text { Change of lengh of an object by the applied force }}{\text { Initial length }}$
(b) By definition we know the Young's Modulus is
$\mathrm{Y}=\frac{\frac{F}{A}}{\frac{\Delta l}{L}}=\frac{\frac{m g}{A}}{\frac{\Delta l}{L}}=\frac{\frac{100 \times 10}{0.5 \times 10^{-4}}}{\frac{0.5}{0.5}}=2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$, Where $\mathrm{L}=0.5 \mathrm{~m}$ and $\Delta l=1 \mathrm{~m}-0.5 \mathrm{~m}=0.5 \mathrm{~m}$

