General Physics II，Quiz 9

PHYS1000AA，Class year103／2015 2015－05－19，Thursday

Quiz－9 Solution

1．Solution ：（Basic question，similar to $38+39$ chap．28，text book $9^{\text {th }}$ edition）
（a）

（b）For a RC circuit we know the time constant is given by ，$\tau=R C$
Here the given time constant $\tau=1 \mathrm{~ms}=1 \times 10^{-3} \mathrm{~s}$
So we can find the resistance needed to get required flush time using，$\tau=R C$

$$
\begin{aligned}
& 1 \times 10^{-3}=\mathrm{R} \times 5 \times 10^{-6} \quad \text { Since } \mathrm{C}=\frac{Q}{\varepsilon} \\
& \therefore \mathrm{R}=\frac{1 \times 10^{-3}}{5 \times 10^{-6}}=200 \Omega
\end{aligned}
$$

（c）For a RC circuit the current generated at a cirtain time is given by $I(t)=\frac{\varepsilon}{R} e^{-\frac{t}{R C}}$ Using given parameter we get，$I(t)=\frac{5}{200} e^{-\frac{1 \times 10^{-3}}{1 \times 10^{-3}}}=43 \mathrm{~mA}$

2．Solution ：（Similar to problem no．61＋7，chap．30＋29，text book $9^{\text {th }}$ edition）
(a) ? or the Helmholtz coil , the separation distance is equal to the radius of the coil. The magnetic filed produced at a point on the common axis of the coils and halfway between the coils is given by

$$
\mathrm{B}=\frac{2 \mu_{0} I R^{2}}{2\left[\left(\frac{R}{2}\right)^{2}+R^{2}\right]^{3 / 2}}=\frac{\mu_{0} I R^{2}}{\left[\left(\frac{R}{2}\right)^{2}+R^{2}\right]^{3 / 2}}=\frac{\mu_{0} I}{\left[\left(\frac{1}{2}\right)^{2}+1\right]^{3 / 2} R}=\frac{\mu_{0} I}{1.40 R} \text { for } 1 \text { turn }
$$

So for N turn it will be

$$
\mathrm{B}=\frac{N \mu_{0} I}{1.40 R}=\frac{100 \times 4 \pi \times 10^{-7} \times 10}{1.40 \times 0.5}=1.79 \times 10^{-3} \mathrm{~T}
$$

(b) We will find the speed of the electron. Since it is in motion the energy will be the total
kinetic energy , so $\Delta \mathrm{E}=\frac{1}{2} m v^{2}$ which is proportional to the applied voltage on eletron $=\mathrm{e} \Delta \mathrm{V}$,where e is the charge of electron. From this relation we can conclude $\frac{1}{2} m v^{2}=\mathrm{e} \Delta \mathrm{V}$
So $\mathrm{v}=\sqrt{\frac{2 e \Delta V}{m}}=\sqrt{\frac{2\left(1.60 \times 10^{-19}\right) \times 2400}{9.11 \times 10^{-31}}}=2.90 \times 10^{7} \mathrm{~m} / \mathrm{s}$
So the maximum magnetic force can be found using lorentz force, $\mathrm{F}_{\mathrm{B}}=e \vec{v} \times \vec{B}$
where e is the charge of electron, B is the magnetic field .
$\begin{aligned} \therefore & \mathrm{F}_{B, \max }=\left(1.6 \times 10^{-19}\right) \times\left(2.90 \times 10^{7}\right) \times\left(1.80 \times 10^{-3}\right) \sin 90^{\circ}=8.35 \times 10^{-15} \mathrm{~N} \\ & \mathrm{~F}_{B, \text { min }}=e v B \sin \theta=0 \text {, when the } v \text { is parallel }\left(\theta=0^{\circ}\right) \text { or antiparallel }\left(\theta=180^{\circ}\right) \text { to } B\end{aligned}$
3. Solution: (Basic question from text book $\boldsymbol{9}^{\text {th }}$ edition)
(a) We know in a solinoid induced electric field is equal to the rate magnetic flux produced inside the coil. We will calculate electric field induced in a small lenght dl of solinoid for a closed loop, $\left\lceil\mathfrak{j} E \cdot d l=\left|\frac{d \Phi_{B}}{d t}\right|\right.$
If we take cross-section of solinoid we can get the circumference of it , $\lceil d l=2 \pi r$, where r is the radius of the coil.
So we can write, $2 \pi r E=\left|\frac{d \Phi_{B}}{d t}\right|=A \frac{d B}{d t}=\pi \mathrm{r}^{2} \frac{d B}{d t}$,
where A is the area of coil , equal to the area of circle.
Using Biot -Severt Law , we can write , $\mathrm{B}=\frac{\mu_{0} I}{2 \pi r}$,
So , $2 \pi r E=\pi \mathrm{r}^{2} \frac{\mu_{0}}{2 \pi r} \frac{d I}{d t}$
$\therefore E=\frac{\mu_{0}}{4 \pi} \frac{d I}{d t}=\frac{\mu_{0}}{4} 500 \cos 100 \Pi t=125 \mu_{0} \cos 100 \Pi t, \quad$ Sin $c e ~ I=5 \sin 100 \Pi t$
(b) The direction of electric field is opposite to the increasing magnetic field . It will be Clockwise .

