Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics II，Quiz 8
PHYS1000AA，Class year103／2015 2015－04－16，Thursday

Quiz－8 Solution

1．Solution ：（ Similar to problem no．57，chap．23，text book $9^{\text {th }}$ edition）

（a）The time interval will be the time travelled the distance 5.0 cm ．So

$$
\begin{aligned}
& T=\frac{S}{V}, \text { Where } \mathrm{V}=\text { velocity }, \mathrm{S}=0.05 \mathrm{~m} \\
& \therefore T=\frac{0.05 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.67 \times 10^{-10} \mathrm{~s}=0.167 \mathrm{~ns}
\end{aligned}
$$

（b）Since the particles is in motion，we can calculate the vertical displacement using Newton＇s Law of motion．The gravitational force is here ignorable due to its very small effect．

$$
\begin{aligned}
& S_{y}=V_{0} t+\frac{1}{2} a t^{2}, \text { Here } t=T, V=\text { initial velocity }=0 \mathrm{~m} / \mathrm{s}, a=\text { acceleration } \\
& \therefore S_{y}=\frac{1}{2} a t^{2}
\end{aligned}
$$

Now we know ，$a=\frac{\text { Force }}{\text { mass }}=\frac{Q E}{m}=\frac{\text { Particle charge } \times \text { Applied electric field }}{\text { Mass of the particle }}$
$\therefore a=\frac{Q E}{m}=\frac{1.6 \times 10^{-19} \mathrm{C} \times 9.6 \times 10^{5} \mathrm{~N} / \mathrm{C}}{1.67 \times 10^{-27} \mathrm{~kg}}=9.6 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}$
So，$S_{y}=\frac{1}{2}\left(9.6 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.67 \times 10^{-10} \mathrm{~s}\right)^{2}=1.3 \mu \mathrm{~m}$
（c）Horizontal component，$v_{x}=$ the velocity with which it is moving $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
\＆the verticla component will be

$$
v_{y}=V_{0}+a t=0+\left(9.6 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.67 \times 10^{-10} \mathrm{~s}\right)=1.6 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

2．Solution ：（Similar to problem no．19＋15，chap．24＋25，text book $\boldsymbol{9}^{\text {th }}$ edition）

（a）？he number of electric field lines passing through a unit surface area is known as the electric flux．If the electric field is E and the enclosed area of electric field lines A ， the electric flux can be defined as $\Phi=\int_{S}$ E．dA
\otimes The Gauss＇s law of point charge enclosed by a surface is $\Phi=\int_{s}$ E．dA $=\frac{q}{\varepsilon_{0}}$ ，Where $q=$ the electron charge ，$\varepsilon_{0}=$ Electric permittivity of vaccum space．
(b) We know the flux $\Phi=\frac{\text { Total charge }}{\varepsilon_{0}}$

Here the total charge $=\mathrm{Q}-6 \mathrm{q}$
\therefore The total outward flux from the cube, $\Phi=\frac{\mathrm{Q}-6 \mathrm{q}}{\varepsilon_{0}}=\frac{(5-12) \times 10^{-6} \mathrm{C} . N . \mathrm{m}^{2}}{8.85 \times 10^{-12} \mathrm{C}^{2}}$

$$
\Phi=-0.80 \times 10^{6} N . m^{2} / C
$$

The flux through each face of the cube, $\Phi=-\frac{800}{6} \mathrm{kN} \cdot \mathrm{m}^{2} / \mathrm{C}=-133 \mathrm{kN} \cdot \mathrm{m}^{2} / \mathrm{C}$ Since the cube has 6 face symetrical shape
(c) The potential is
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}$,Where, $\mathrm{r}=$ Separation distance $=\frac{L}{2}=5.0 \mathrm{~cm}$
Since there are six electron, so for each elctron the potential will be
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}=8.9 \times 10^{9} \times \frac{Q q}{r}=\frac{8.9 \times 10^{9} \times 5 \times 10^{-6} \times\left(-2 \times 10^{-6}\right)}{0.05}=-1.78 \mathrm{~V}$
Then the total potential $=\left(V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}\right)=6 \mathrm{~V}=-1.78 \times 6=10.7 \mathrm{~V}$,

$$
\text { Since } V_{1}=V_{2}=V_{3}=V_{4}=V_{5}=V_{6}
$$

3. Solution: (Basic question from text book $9^{\text {th }}$ edition)

(a) The total charge is $\mathrm{Q}=\mathrm{CV}$,
where $\mathrm{C}=$ Capacitance of capacitor, $\mathrm{V}=$ Applied voltage
If the capacitor is in parallel connection, the total capacitance will be $\mathrm{C}_{p}=C_{1}+C_{2}+C_{3}$

$\therefore \mathrm{C}_{p}=(5+15+20) \times 10^{-6} \mathrm{~F}=40 \times 10^{-6} \mathrm{~F}$
The total charge, $\mathrm{Q}=\mathrm{CV}=\mathrm{C}_{p} V 40 \times 10^{-6} \times 5=2 \times 10^{-4}$ Coulombs
(b) For the case of this connection, $\mathrm{C}_{p}=C_{1}+C_{2}=(5+15) \mu \mathrm{F}=20 \mu \mathrm{~F}$ and $\frac{1}{C_{s}}=\frac{1}{C_{3}}+\frac{1}{C_{p}}=\frac{1}{20}+\frac{1}{20}=\frac{1+1}{20}=\frac{1}{10}$
$\therefore C_{s}=10 \mu \mathrm{~F}$
The voltage you need to supply, $\mathrm{V}=\frac{Q}{C}=\frac{2 \times 10^{-4}}{10 \times 10^{-6}}=20 \mathrm{~V}$
(b)

Step-2

