Midterm-1 Exam Question's Solution (2014.10.30)

1.

$$
\begin{aligned}
& \text { Moment of Inertia of a solid sphere : } \\
& \text { Solid sphere ahosit any diameter } \\
& \text { cut th sphere into ming Liviviontal } \\
& \text { disks of radius } r \text {. } \\
& d I_{\text {disk }}=\frac{1}{2} r^{2} d m
\end{aligned}
$$

$$
\begin{aligned}
& I=(2) \frac{\pi \rho}{2} \int_{0}^{R}\left(R^{2}-x^{2}\right) d x \\
& =\frac{8 \pi \rho R^{5}}{15} \\
& \text { But } \rho=\frac{M}{v}=\frac{3 M}{4 \pi R^{3}} \\
& \therefore I=\left(\frac{8 \pi R^{5}}{15}\right)\left(\frac{3 M}{4 \pi R^{3}}\right)=\frac{2}{5} M R^{2} \\
& K . E=1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{M}(\dot{\omega} R)^{2} \quad[\text { Since } V=\omega \text { R] } \\
& \begin{array}{ll}
=1 / 2 \mathrm{MR}^{2} \dot{\omega}^{2} \quad\left[\text { Since } \mathrm{I}=\mathrm{MR}^{2}\right] \\
=1 / 2 \mathrm{I} \dot{\omega}^{2}
\end{array}
\end{aligned}
$$

2.
3. According to Newton's $3^{\text {rd }}$ law

$$
\begin{aligned}
& F_{1}=-F_{2} \\
& F_{1}+F_{2}=0 \\
& O r, M_{1} a_{1}+M_{2} a_{2}=0 \\
& M_{1} d V_{1} / d t+M_{2} d V_{2} / d t=0 \\
& d\left(M_{1} V_{1} / d t\right)+d\left(M_{2} V_{2} / d t\right)=0 \\
& d / d t\left(M_{1} V_{1}+M_{2} V_{2}\right)=0
\end{aligned}
$$

So, $\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}=$ Constant, It means that during the
motion this quantity is conserved. Define linear momentum, $\mathrm{P}=\mathrm{MV}$. Therefore the linear momentum is conserved.

4.

As shown in the figure to the right, (Example 6.6 in the text book) the forces acting on a sphere of mass m connected to a cord of length R and rotating in a vertical circle centered at O. Forces acting on the sphere are shown when the sphere is at the top and bottom of the circle and at an arbitrary location. From the force diagram in Figure on the right, we see that the only forces acting on the sphere are the gravitational force $\mathbf{F}_{\mathbf{g}}=\mathbf{m g}$ exerted by the Earth and the force \mathbf{T} exerted by the cord. We resolve F_{g} into a tangential component $m g$ sin $\boldsymbol{\theta}$ and a radial component $\boldsymbol{m g} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$.
Apply Newton's second law to the sphere in the tangential direction:

$$
\sum F_{g}=m g \sin \theta=m a_{t}, \quad a_{t}=g \sin \theta
$$

Apply Newton's second law to the forces acting on the sphere in the radial direction, noting that both \mathbf{T} and $\mathbf{a}_{\mathbf{r}}$ are directed toward O :
$\sum F_{r}=T-m g \cos \theta=\frac{m v^{2}}{R}$
$T=m g\left(\frac{v^{2}}{R g}+\cos \theta\right)$
Let us evaluate this result at the top and bottom of the circular path:
$T_{\text {top }}=m g\left(\frac{v_{\text {top }}^{2}}{R g}-1\right)$, and $T_{\text {bottom }}=m g\left(\frac{v_{\text {bottom }}^{2}}{R g}+1\right)$

5.

This problem is from Page 188 (Example 7.9) of text book.
(a) The separation of two atoms is where the potential is in its minimum. To find the minimum, we set $\frac{d U(x)}{d x}=4 \varepsilon \frac{d}{d x}\left[\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right]=4 \varepsilon\left[\frac{-12 \sigma^{12}}{x^{13}}+\frac{6 \sigma^{6}}{x^{7}}\right]=0$ $\frac{d U(x)}{d x}=4 \varepsilon \frac{d}{d x}\left[\left(\frac{\sigma}{x}\right)^{12}-\left(\frac{\sigma}{x}\right)^{6}\right]=4 \varepsilon\left[\frac{-12 \sigma^{12}}{x^{13}}+\frac{6 \sigma^{6}}{x^{7}}\right]=0, x=(2)^{\frac{1}{6}} \sigma$
(b) Plug in numbers given, $\mathrm{x}=2.95 \times 10-{ }^{10} \mathrm{~m}$
6.
(a)

$$
\begin{array}{ll}
\text { (1) } m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} & 2 m_{1} v_{1 i}+\left(m_{2}-m_{1}\right) v_{2 i}=\left(m_{1}+m_{2}\right) v_{2 f} \\
\text { (2) } v_{1 i}-v_{2 i}=-\left(v_{1 f}-v_{2 f}\right) & v_{2 f}=\frac{2 m_{1} v_{1 i}+\left(m_{2}-m_{1}\right) v_{2 i}}{m_{1}+m_{2}} \\
\text { (3) } m_{1} v_{1 i}-m_{1} v_{2 i}=-m_{1} v_{1 f}+m_{1} v_{2 f} &
\end{array}
$$

(b)

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& v_{2 f}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}-m_{1} v_{1 f}}{m_{2}} \\
& v_{2 f} \\
& =\frac{(1.60 \mathrm{~kg})(4.00 \mathrm{~m} / \mathrm{s})+(2.10 \mathrm{~kg})(-2.50 \mathrm{~m} / \mathrm{s})-(1.60 \mathrm{~kg})(3.00 \mathrm{~m} / \mathrm{s})}{2.10 \mathrm{~kg}} \\
& ==1.74 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

