Final-1 Solution

1. Solution : (Similar to 15.4, text book $8^{\text {th }}$ edition)

(a)For a spring , $\mathrm{F}=-\mathrm{kx}=\mathrm{ma}$

$$
\begin{aligned}
& \mathrm{a}=\frac{d^{2} x}{d t^{2}}=\frac{-k x}{m} \\
& \frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x=\omega^{2} x, \text { where } \omega=\sqrt{\frac{k}{m}} \\
& \frac{d^{2} x}{d t^{2}}+\omega^{2} x=0
\end{aligned}
$$

(b) Here, $\mathrm{s}=\mathrm{L} \theta$

$$
\begin{aligned}
& \text { So }, \mathrm{F}=\mathrm{ma}= \mathrm{m} \frac{d^{2} s}{d t^{2}}=-m g \sin \theta \\
& \frac{d^{2} s}{d t^{2}}= \\
& \frac{d^{2} \theta}{d t^{2}}=-\frac{g}{L} \sin \theta \\
& \sin \theta \quad \text { Since } \mathrm{s}=\mathrm{L} \theta
\end{aligned}
$$

2. Solution: (Similar to 18.2 , text book $8^{\text {th }}$ edition)

(a)The wave function of the travelling waves are
$\mathrm{y}_{1}=A \sin (k x-\omega t)($ for right $)$
$\mathrm{y}_{2}=A \sin (k x+\omega t)$ (for left)
(b) Wave function for the standing wave will be

$$
\begin{aligned}
\mathrm{Y} & =\mathrm{y}_{1}+y_{2} \\
& =A \sin (k x-\omega t)+A \sin (k x+\omega t) \\
& =A[\sin (k x-\omega t)+\sin (k x+\omega t)] \\
& =2 A \sin k x \cos \omega t \quad \text { Since } \sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{D-C}{2}
\end{aligned}
$$

(c)The condition for the node can be found for $2 A \sin k x=0$
or , $\sin k x=0 \quad$ or, $k x=n \pi$

$$
\frac{2 \pi x}{\lambda}=n \pi, \quad \text { or, } x=\frac{n}{2} \lambda, \text { where } n=0,1,2,3 \ldots \ldots \ldots \ldots . N
$$

So, $x=0, \frac{\lambda}{2}, \lambda, \frac{3 \lambda}{2}$, \qquad are the condition for NODE

3. Solution: (Similar to page 472, Halliday Book)

The internal energy chnage
$\Delta \mathrm{E}_{\text {int }}=\Delta\left(n C_{v} T\right)=C_{v} \Delta(n T)$
But we know , $P V=n R T$ for a ideal gas
So , $n T=\frac{P V}{R}$
Put this value in equation (1), we get
$\Delta \mathrm{E}_{\text {int }}=C_{v} \Delta\left(\frac{P V}{R}\right)$, But here $\mathrm{P}, \mathrm{V}, \mathrm{R}$ are all constant
So there will no change of internal energy
$\Delta \mathrm{E}_{\text {int }}=0$

4. Solution: (Similar to 21.5 , text book $8^{\text {th }}$ edition)

(a) C_{p} needs to consider extra work done by (or be done to) the gas , so extra energy is required.
(b) We know, $\Delta \mathrm{E}_{\text {in }}=n C_{v} d T=Q+W=0-P d V$ (for adiabatic process)
$n C_{v} d T=-P d V$ or, $n d T=-\frac{P d V}{C_{v}}$
Now for a ideal gas, $\mathrm{PV}=\mathrm{nRT}$
Using differntiation we can write ,
$P d V+V d P=n R d T$
$P d V+V d P=-\frac{P d V}{C_{v}} R=-\frac{\left(C_{p}-C_{v}\right) P d V}{C_{v}}$, Since $R=C_{p}-C_{v}$
$P d V\left[1+\frac{\left(C_{p}-C_{v}\right)}{C_{v}}\right]=-V d P$
$\frac{d V}{V}(1+\gamma-1)+\frac{d P}{P}=0 \quad$, Since $\frac{C_{p}}{C_{v}}=\gamma$
Using integration we get, $\ln \mathrm{P}+\ln V^{\gamma}=\ln C$, Where C is constant
$\therefore P V^{\gamma}=$ Constant

5. Solution: (Set-up from the basic)

(a) We know the gravitational force , $F=\frac{G m M_{\text {ins }}}{R^{2}}$

For a spherically symmetric mass, the net gravity force on an object from that mass would be only that due to the mass inside its radius, and that would act as if it were a point mass located at the center.
So we can write, $m=$ object mass , $\mathrm{M}_{\text {ins }}=$ Mass of Earth inside the radius
$M_{\text {ins }}=\rho V_{\text {ins }}=\rho \frac{4 \pi R^{3}}{3}, \quad \because V_{\text {ins }}=\frac{4 \pi R^{3}}{3}$
So, $F=\frac{4 \pi G m \rho}{3} R=k R$, where $k=\frac{4 \pi G m \rho}{3}=$ constant
Which is similar to $F=-k x$
We can compare its motion with a Simple Harmonic Oscillator (SHO)
So the object motion will be simple harmonic motion and it will reach to the south pole.
(b) Now we know the frequency of oscillator is
$f=2 \pi \sqrt{\frac{k}{m}}$,
So $T=\frac{1}{f}=\frac{1}{2 \pi} \sqrt{\frac{m}{k}}=\frac{1}{2 \pi} \sqrt{\frac{m}{\frac{4 \pi G m \rho}{3}}}=\sqrt{\frac{3}{4 \pi G \rho}}$

