Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics I，Quiz 5
PHYS1000AA，Class year103／2014
2014－12－16

Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

Quiz－5 Solution

1．Solution ：（Similar to problem no．29，chap．17，text book $8^{\text {th }}$ edition）

（a）We know the sound level $\beta=10 \log \left(\mathrm{I} / 10^{-12}\right)$
So the intensity， $\mathrm{I}=10^{(\beta / 10)}\left(10^{-12)} \mathrm{W} / \mathrm{m}^{2}\right.$
For $100 \mathrm{~dB}, \mathrm{I}_{(100 \mathrm{~dB})}=10^{(100 / 10)} \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}=10^{-2} \mathrm{~W} / \mathrm{m}^{2}$
Now average power of sound，$P=4 \Omega r^{2} I$
We can compare for different distances using constant source power by

$$
\begin{aligned}
& \mathrm{r}_{1}{ }^{2} \mathrm{I}_{(100 \mathrm{~dB})}= \mathrm{r}_{2}{ }^{2} \mathrm{I}_{2} \\
& \mathrm{I}_{2}=\left(\mathrm{r}_{1}{ }^{2} \mathrm{I}_{1}\right) / \mathrm{r}_{2}{ }^{2}=\left[(3000)^{2} \times 10^{-2}\right] /(2000)^{2} \\
& \mathrm{I}_{2}=0.023 \mathrm{~W} / \mathrm{m}^{2}=2.3 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

（b）When the sound level＝zero ，
The intensity $\mathrm{I}_{(0 \mathrm{~dB})}=10^{(0 / 10)} \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
Using the relation $\quad r_{1}{ }^{2} I_{(100 d B)}=r_{2} I_{2}$
One can get，$r_{2}=\left[r_{1}^{2} \mathrm{I}_{(100 \mathrm{~dB})}\right] / \mathrm{I}_{0 \mathrm{~dB}}=9000 / 10^{-12}=9 \times 10^{15} \mathrm{~m}$

2．Solution：（Similar to problem no．（37＋45），chap．17，text book $\boldsymbol{8}^{\text {th }}$ edition）
（a）The net velocity of sound will be $\left(\mathrm{V}-\mathrm{V}_{0}\right)$
So the wave length is
$\lambda=\left(\mathrm{V}_{0}-\mathrm{V}_{\mathrm{w}}\right) / f=(332-32) / 1000=0.3 \mathrm{~m}$
（b）Using Doppler effect
Observe frequency before passing

$$
\begin{aligned}
& f_{1}^{\prime}=\left(\mathrm{V}_{0}+\mathrm{V}\right) f / \mathrm{V}_{0} \\
& =[(332+532) / 332] \times 1000000 \\
& =2602.5 \mathrm{kHz}=\sim 2063 \mathrm{kHz}
\end{aligned}
$$

Observed frequency after passing，

$$
\begin{aligned}
f_{2} & \prime \\
& =\left(\mathrm{V}_{0}-\mathrm{V}\right) f / \mathrm{V}_{0} \\
& =[(332-532) / 332] \times 1000 \\
& =-603 \mathrm{kHz}
\end{aligned}
$$

Since frequency is just a quantity so taking positive sign，
$f_{2}^{\prime}=603 \mathrm{kHz}$

Here
$\mathrm{V}_{\mathrm{w}}=32 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}=1915 \mathrm{~km} / \mathrm{hr}$
$=1915 \times 10^{3} / 3600$
$=532 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{0}=332 \mathrm{~m} / \mathrm{s}$
$f=1000 \mathrm{k} \mathrm{Hz}$

