Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics I，Quiz 4
PHYS1000AA，Class year103／2014
2014－12－02

Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

Quiz－4 Solution

1．Solution ：（Similar to problem no．47，chap．14，text book $8^{\text {th }}$ edition）

（a）Using Bernoulli＇s equation we write
$P_{1}+\rho v_{1}{ }^{2} / 2=P_{2}+\rho v_{2}{ }^{2} / 2$
$\mathrm{P}_{1}-\mathrm{P}_{2}=\rho\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right) / 2=\rho \mathrm{v}_{1}{ }^{2}\left[\left(\mathrm{~A}_{1} / \mathrm{A}_{2}\right)-1\right] / 2=15 / 2 \rho \mathrm{v}_{1}{ }^{2}$
$\Delta \mathrm{P}=15 \times 350 \mathrm{v}_{1}{ }^{2}$
$\mathrm{v}_{1}=\sqrt{ }(3500 / 5250)=\sqrt{ }(0.66)=0.81 \mathrm{~m} / \mathrm{s}$
So， $\mathrm{v}_{2}=\left(\mathrm{A}_{1} / \mathrm{A}_{2}\right) \mathrm{v}_{1}=4 \times 0.81=3.25 \mathrm{~m} / \mathrm{s}$（Outlet velocity）
（b）We know， $\mathrm{F}=\mathrm{ma}=(\mathrm{m} / \mathrm{t}) \mathrm{v}$
Given flow rate $\left(\mathrm{v}_{2} \mathrm{~A}_{2}\right)=1000 \mathrm{~cm}^{3} / \mathrm{sec}=$ volume $/ \mathrm{sec}$
We can write
Mass $/$ time $=$ Density $(\rho) \times($ Volume $/ \mathrm{sec})$

$$
\begin{aligned}
& =700 \mathrm{~kg} / \mathrm{m}^{3} \times 0.001 \mathrm{~m}^{3} / \mathrm{sec} \\
& =0.7 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

We know from equation of continuity， $\mathrm{v}_{1} \mathrm{~A}_{1}=\mathrm{v}_{2} \mathrm{~A}_{2}$
Or，$\quad A_{1} / A_{2}=v_{2} / v_{1}$ ，
Or ， $\mathrm{v}_{2} / \mathrm{v}_{1}=\mathrm{A}_{1} / \mathrm{A}_{2}=(4 / 2)^{2}=4$
［ $\mathrm{A}=$ area $=\pi r^{2}$ ］
$\rho=700 \mathrm{~kg} / \mathrm{m}^{3}$
$\Delta \mathrm{P}=3.5 \times 10^{3} \mathrm{~Pa}$

So，$F=(\mathrm{m} / \mathrm{t}) \mathrm{v}_{2}=0.7 \mathrm{x} 3.25=2.3 \mathrm{~N}$

2．Solution：（Similar to problem no．39，chap．15，text book $8^{\text {th }}$ edition）
（a）We know that the angular frequency of damped oscillation is given by

$$
\begin{aligned}
\omega & =\sqrt{ }\left[\omega_{0}{ }^{2}-(\mathrm{b} / 2 \mathrm{~m})^{2}\right] \\
& =\sqrt{ }\left[205^{2}-(5 / 200)^{2}\right] \\
& =205 / \mathrm{sec}
\end{aligned}
$$

So we can write the linear frequency

$$
f=\omega / 2 \pi=205 /(2 \times 3.14)=32.7 \sim 33 \mathrm{~Hz}
$$

（b）Oscillation can be considered as SHO

$$
\begin{aligned}
& \text { Given, } \\
& \begin{aligned}
\mathrm{b} & =\text { damping coefficient } \\
& =5.00 \mathrm{~N} . \mathrm{s} / \mathrm{m} \\
\mathrm{~m} & =100 \mathrm{~kg}
\end{aligned}
\end{aligned}
$$

We know the angular frequency
of un－damped oscillation is $\omega_{0}=\sqrt{ } \mathrm{k} / \mathrm{m}$
$\omega_{0}=\left(2.05 \times 10^{4} / 100\right) / \mathrm{sec}$

$$
=205 / \mathrm{sec}
$$

3．Solution：（It is very fundamental question from wave motion．Almost similar to problem no．11＋15，chap．16，text book $8^{\text {th }}$ edition）
（a）1－is transverse and 2－is longitudinal wave．
（b）Frequency，$f=\mathrm{v} / \lambda=20 / 2.0=10 \mathrm{~Hz}$
Angular frequency，$\omega=2 \pi f=2 \times 3.14 \times 10=63 / \mathrm{sec}$
（c）Wave number， $\mathrm{k}=2 \pi / \lambda=2 \times 3.14 / 2.0=3.14 \mathrm{rad} / \mathrm{m}$
（d）$y=A \sin (k x-\omega t+\varphi)=(0.01 m) \sin (3.14 x / m-63 t / s+0)$ $y=(0.01 \mathrm{~m}) \sin (3.14 \mathrm{x} / \mathrm{m}-63 \mathrm{t} / \mathrm{s})$ ，since it started from origin $(0,0)$ ．

